|
import streamlit as st
|
|
import pandas as pd
|
|
import streamlit.components.v1 as components
|
|
import textwrap as tw
|
|
|
|
|
|
st.set_page_config(page_title='Portparser', layout="wide")
|
|
|
|
page_bg_img = f"""
|
|
<style>
|
|
[data-testid="stAppViewContainer"] > .main {{
|
|
background: linear-gradient(180deg, #88bbcf,#f1f1f1,#f1f1f1,#f1f1f1); /**#ccebff 10%, #f1f1f1 90% #0088be);
|
|
padding-left:4rem;
|
|
padding-right:4rem;
|
|
background-image: url("img/nilc.png");
|
|
background-repeat: repeat;
|
|
background-position: center center;
|
|
background-attachment: local;
|
|
/**#f1f1f1/** #008fb3/**#accad2;/**#b3b3ff;**/
|
|
/**background-image: url("https://i.postimg.cc/4xgNnkfX/Untitled-design.png");
|
|
background-position: center center;
|
|
background-repeat: no-repeat;
|
|
background-attachment: local;**/
|
|
}}
|
|
[data-testid="stForm"] {{
|
|
background-color: #9bc2d1;/**#7ebac9;/**#0086b3;**/
|
|
}}
|
|
.appview-container .main .block-container {{
|
|
padding-top: 1rem;
|
|
padding-bottom: 3rem;
|
|
}}
|
|
h1 {{
|
|
color:#003d66;/**#143350**/;
|
|
padding-left:1rem;
|
|
padding-right:1rem;
|
|
}}
|
|
[class="css-1n543e5 e1ewe7hr5"] {{
|
|
background-color: #ffffff /**#000066; /**#9bc2d1;/**#7ebac9;/**#0086b3;**/
|
|
|
|
}}
|
|
[class="css-1n543e5 e1ewe7hr5"]:hover {{
|
|
background-color: #8080ff; /**#9bc2d1;/**#7ebac9;/**#0086b3;**/
|
|
color:white;
|
|
border: solid 1px #000066;
|
|
}}
|
|
a:link{{
|
|
color:#0088be;
|
|
}}
|
|
a:hover {{
|
|
color: #7733ff/**#8080ff**/;
|
|
}}
|
|
button{{
|
|
padding-left:1rem;
|
|
padding-right:1rem;
|
|
border-radius: 15%;
|
|
}}
|
|
button:hover {{
|
|
color:#7733ff;
|
|
border:solid 1px #7733ff;
|
|
|
|
}}
|
|
</style>
|
|
"""
|
|
|
|
head_css = """
|
|
<style>
|
|
[class="css-ocqkz7 esravye3"] {
|
|
/**background-color: #9bc2d1;**/
|
|
}
|
|
[class="css-ocqkz7 esravye3"]{
|
|
/**row1**/
|
|
margin:0px 0px 0px 0px;
|
|
padding:0;
|
|
}
|
|
.stApp {
|
|
background-image: url("portparser_brasil1.jpg");
|
|
background-repeat: repeat;
|
|
background-position: center;
|
|
}
|
|
</style>
|
|
"""
|
|
|
|
|
|
|
|
a = """
|
|
<style>
|
|
div.css-10r1649 esravye0 {
|
|
background-color: red;
|
|
}
|
|
</style>
|
|
"""
|
|
custom_html = """
|
|
<div class="banner" style="background-color:#0088be; color:white">
|
|
<h1>PortParser</h1>
|
|
<!--<img src="https://img.freepik.com/premium-photo/wide-banner-with-many-random-square-hexagons-charcoal-dark-black-color_105589-1820.jpg" alt="Banner Image">-->
|
|
</div>
|
|
<style>
|
|
.banner {
|
|
width: 160%;
|
|
height: 200px;
|
|
overflow: hidden;
|
|
}
|
|
.banner img {
|
|
width: 100%;
|
|
object-fit: cover;
|
|
}
|
|
</style>
|
|
"""
|
|
|
|
|
|
st.markdown(page_bg_img, unsafe_allow_html=True)
|
|
st.markdown(head_css, unsafe_allow_html=True)
|
|
|
|
row2 = st.columns([6,2,3])
|
|
|
|
with row2[0]:
|
|
st.markdown("<p style='padding-bottom:25px; padding-top:50px'><b style='font-size:calc(40px + 2vw); color:#003d66;line-height: 40px'><i>Portparser</i></b><br><b style='font-size:18px;color:#266087;line-height:4px'>\
|
|
A parsing model for Brazilian Portuguese</b></p>",unsafe_allow_html=True)
|
|
st.write('This is Portparser, a parsing model for Brazilian Portuguese that follows the Universal Dependencies (UD) framework.\
|
|
We built our model by using a recently released manually annotated corpus, the Porttinari-base, \
|
|
and we explored different parsing methods and parameters for training. We also test multiple embedding models and parsing methods. \
|
|
Portparse is the result of the best combination achieved in our experiments.')
|
|
st.write('Our model is explained in the paper https://aclanthology.org/2024.propor-1.41.pdf, and all datasets and full instructions to reproduce our experiments \
|
|
freely available at https://github.com/LuceleneL/Portparser. More details about this work may also be found at \
|
|
the POeTiSA project webpage at https://sites.google.com/icmc.usp.br/poetisa/.')
|
|
with st.expander('How to cite?', expanded=False):
|
|
st.code("""
|
|
@inproceedings{lopes2024towards,
|
|
title={Towards Portparser-a highly accurate parsing system for Brazilian Portuguese following the Universal Dependencies framework},
|
|
author={Lopes, Lucelene and Pardo, Thiago},
|
|
booktitle={Proceedings of the 16th International Conference on Computational Processing of Portuguese},
|
|
pages={401--410},
|
|
year={2024}
|
|
}""")
|
|
|
|
with row2[2]:
|
|
st.image('img/wordcloud_brasil5.png')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
print('---------------------------')
|
|
|
|
st.markdown("""
|
|
<script language="JavaScript" type="text/javascript" src="arborator-draft.js"></script>
|
|
<script language="JavaScript" type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/d3/4.10.0/d3.js"></script>
|
|
<script src="https://code.jquery.com/jquery-3.2.1.min.js" integrity="sha256-hwg4gsxgFZhOsEEamdOYGBf13FyQuiTwlAQgxVSNgt4=" crossorigin="anonymous"></script>
|
|
<link rel="stylesheet" href="arborator-draft.css" type="text/css" />
|
|
<script src="d3.js"></script>
|
|
<script src="jquery-3.2.1.min.js"></script>
|
|
<script>
|
|
new ArboratorDraft();
|
|
</script>"""
|
|
,unsafe_allow_html=True)
|
|
|
|
|
|
def make_conllu(path_text, path_input):
|
|
try:
|
|
os.system(f'python portTokenizer/portTok.py -o {path_input} -m -t -s S0000 {path_text}')
|
|
return 'Converti o texto para conllu.'
|
|
|
|
except Exception as e:
|
|
return str(e)
|
|
|
|
|
|
def make_embedding(path_input, path_embedding, model_selected):
|
|
try:
|
|
os.system(f'python ./wembedding_service/compute_wembeddings.py {path_input} {path_embedding} --model {model_selected}')
|
|
return 'Fiz as embeddings.'
|
|
except Exception as e:
|
|
return str(e)
|
|
|
|
|
|
def make_predictions(path_input, path_prediction):
|
|
try:
|
|
os.system(f'python ./udpipe2/udpipe2.py Portparser_model --predict --predict_input {path_input} --predict_output {path_prediction}')
|
|
return f'Fiz a predição.'
|
|
except Exception as e:
|
|
return str(e)
|
|
|
|
|
|
def get_predictions(path_prediction):
|
|
try:
|
|
with open(path_prediction, 'r') as f:
|
|
st.text(f.read())
|
|
except Exception as e:
|
|
st.text('Resposta: '+e)
|
|
|
|
st.write('Write a sentence and run to parse:')
|
|
with st.form("parser"):
|
|
text = st.text_input('Text: ')
|
|
model = st.selectbox('Pick a model (Pick a embedding model:):', ['bert-base-portuguese-cased','bert-base-multilingual-uncased','robeczech-base','xlm-roberta-base'])
|
|
model_selected = model+'-last4'
|
|
submit = st.form_submit_button('Run')
|
|
|
|
tab1, tab2, tab3, tab4 = st.tabs(["Running status" ,"Table", "Raw", "Tree"])
|
|
|
|
if submit:
|
|
import sys, os
|
|
print(type(text))
|
|
|
|
tab1.text('input: '+text)
|
|
|
|
files = 'temp'
|
|
input_text = 'text_input.txt'
|
|
input_conllu = 'input.conllu'
|
|
embedding_conllu = 'input.conllu.npz'
|
|
prediction_conllu = 'input_prediction.conllu'
|
|
model = 'Portparser_model'
|
|
|
|
path_text = os.path.join(files, input_text)
|
|
path_input = os.path.join(files, input_conllu)
|
|
path_prediction = os.path.join(files, prediction_conllu)
|
|
path_embedding = os.path.join(files,embedding_conllu)
|
|
|
|
with open(path_text,'w',encoding='utf-8') as f:
|
|
f.write(text)
|
|
import time
|
|
with st.spinner('Transforming text into .conllu...'):
|
|
time.sleep(3)
|
|
tab1.text(make_conllu(path_text, path_input))
|
|
with st.spinner('Processing embeddings...'):
|
|
time.sleep(6)
|
|
tab1.text(make_embedding(path_input, path_embedding, model_selected))
|
|
with st.spinner('Making predictions...'):
|
|
time.sleep(6)
|
|
tab1.text(make_predictions(path_input, path_prediction))
|
|
|
|
try:
|
|
with open(path_prediction, 'r', encoding='utf-8') as f:
|
|
content = f.read()
|
|
tab3.text(content)
|
|
|
|
content = content.split('\n')
|
|
|
|
table = pd.DataFrame([line.split('\t') for line in content[4:]])
|
|
table.columns = ['ID','FORM','LEMMA','UPOS','XPOS','FEATS','HEAD','DEPREL','DEPS','MISC']
|
|
tab2.dataframe(table, use_container_width=True)
|
|
except Exception as e:
|
|
st.text('Não deu certo a predição.'+str(e)+repr(e))
|
|
|
|
|
|
|
|
row1 = st.columns([18,3,4,4])
|
|
with row1[1]:
|
|
st.image('img/nilc-removebg.png')
|
|
with row1[2]:
|
|
st.image('img/poetisa2.png')
|
|
with row1[3]:
|
|
st.image('img/icmc.png')
|
|
|
|
|
|
|
|
st.markdown("""
|
|
<script language="JavaScript" type="text/javascript" src="arborator-draft.js"></script>
|
|
<script language="JavaScript" type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/d3/4.10.0/d3.js"></script>
|
|
<script src="https://code.jquery.com/jquery-3.2.1.min.js" integrity="sha256-hwg4gsxgFZhOsEEamdOYGBf13FyQuiTwlAQgxVSNgt4=" crossorigin="anonymous"></script>
|
|
<link rel="stylesheet" href="arborator-draft.css" type="text/css" />
|
|
<script src="d3.js"></script>
|
|
<script src="jquery-3.2.1.min.js"></script>
|
|
<script>
|
|
new ArboratorDraft();
|
|
</script>"""
|
|
,unsafe_allow_html=True) |