File size: 17,932 Bytes
327d86e
2c19098
26063e6
73696f4
 
8f375f6
 
2834299
d6d20ab
 
73696f4
8f375f6
73696f4
d6d20ab
 
73696f4
 
8f375f6
73696f4
 
 
b8843c9
 
2c19098
76b564d
73696f4
bbbb9e6
73696f4
80c8939
68d7c04
726a73c
327d86e
f843498
 
327d86e
 
8f375f6
68d7c04
08e0be6
 
 
 
9091774
08e0be6
 
 
84b8935
327d86e
 
ceeb18f
327d86e
8f375f6
327d86e
76b564d
0b1c1d9
327d86e
a838e2b
b8843c9
 
b7dbd4c
 
 
 
 
 
 
 
 
 
 
 
 
 
0d45ebb
 
bbbb9e6
890944a
76b564d
 
45d8fb2
 
 
 
d6d20ab
 
 
 
 
 
 
 
a838e2b
 
3e9af73
a838e2b
 
c675e7b
 
 
 
 
 
d6d20ab
 
 
 
 
 
 
b7dbd4c
9c52fdd
d6d20ab
 
5210bf9
2834299
a838e2b
 
 
 
 
 
d6d20ab
 
 
 
 
a838e2b
45d8fb2
 
b3da595
45d8fb2
b3da595
45d8fb2
 
712e3af
d6d20ab
2bc439a
 
76b564d
0b1c1d9
76b564d
a838e2b
0b1c1d9
a838e2b
73696f4
b3da595
d6d20ab
327d86e
b7dbd4c
 
 
 
 
 
b8843c9
b7dbd4c
 
 
 
 
7c50a0f
 
b8843c9
73696f4
 
bbbb9e6
0b1c1d9
73696f4
ceeb18f
0b1c1d9
01f98b3
0b1c1d9
b7dbd4c
0b1c1d9
 
 
 
d6d20ab
 
 
b3da595
890944a
0b1c1d9
2c19098
d6d20ab
2bc439a
 
712e3af
0b1c1d9
712e3af
a838e2b
0b1c1d9
a838e2b
73696f4
b3da595
d6d20ab
327d86e
b7dbd4c
 
 
 
 
 
b8843c9
b7dbd4c
 
 
 
 
7c50a0f
 
712e3af
73696f4
f899110
bbbb9e6
0b1c1d9
73696f4
 
0b1c1d9
 
 
712e3af
0b1c1d9
b7dbd4c
bbbb9e6
0b1c1d9
 
 
82d32ca
 
d6d20ab
 
 
b3da595
5fad7fd
0b1c1d9
 
 
c675e7b
 
b7dbd4c
c675e7b
0b1c1d9
 
 
b7dbd4c
712e3af
ea31a7d
 
 
7bd0a5a
73696f4
712e3af
 
 
7bd0a5a
712e3af
01b89ba
c675e7b
b8ecb9a
327d86e
f899110
7bd0a5a
b7dbd4c
 
7bd0a5a
 
 
2c19098
088c386
f899110
 
 
68d7c04
 
 
f899110
 
 
 
0b1c1d9
 
b7dbd4c
 
d6d20ab
 
45d8fb2
0b1c1d9
f899110
 
 
 
0b1c1d9
b7dbd4c
0b1c1d9
f899110
 
d6d20ab
0b1c1d9
f899110
 
 
0b1c1d9
f899110
0b1c1d9
f899110
 
 
 
2c19098
327d86e
d6d20ab
 
0b1c1d9
d6d20ab
0b1c1d9
b7dbd4c
 
45d8fb2
 
0b1c1d9
68d7c04
b7dbd4c
 
 
 
 
 
0b1c1d9
ceeb18f
1b4dcc5
 
ceeb18f
b4fd759
 
 
 
 
 
1b4dcc5
ceeb18f
2c19098
d6d20ab
 
2bc439a
 
d6d20ab
 
ca42743
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
from diffusers import AutoencoderKL, UNet2DConditionModel, StableDiffusionPipeline, StableDiffusionImg2ImgPipeline, DPMSolverMultistepScheduler
import gradio as gr
import torch
from PIL import Image
import utils
import datetime
import time
import psutil
import random


start_time = time.time()
is_colab = utils.is_google_colab()
state = None
current_steps = 25

class Model:
    def __init__(self, name, path="", prefix=""):
        self.name = name
        self.path = path
        self.prefix = prefix
        self.pipe_t2i = None
        self.pipe_i2i = None

models = [
     Model("Arcane", "nitrosocke/Arcane-Diffusion", "arcane style "),
     Model("Dreamlike Diffusion 1.0", "dreamlike-art/dreamlike-diffusion-1.0", "dreamlikeart "),
     Model("Archer", "nitrosocke/archer-diffusion", "archer style "),
     Model("Anything V3", "Linaqruf/anything-v3.0", ""),
     Model("Modern Disney", "nitrosocke/mo-di-diffusion", "modern disney style "),
     Model("Classic Disney", "nitrosocke/classic-anim-diffusion", "classic disney style "),
     Model("Loving Vincent (Van Gogh)", "dallinmackay/Van-Gogh-diffusion", "lvngvncnt "),
     Model("Wavyfusion", "wavymulder/wavyfusion", "wa-vy style "),
     Model("Analog Diffusion", "wavymulder/Analog-Diffusion", "analog style "),
     Model("Redshift renderer (Cinema4D)", "nitrosocke/redshift-diffusion", "redshift style "),
     Model("Midjourney v4 style", "prompthero/midjourney-v4-diffusion", "mdjrny-v4 style "),
     Model("Waifu", "hakurei/waifu-diffusion"),
     Model("Cyberpunk Anime", "DGSpitzer/Cyberpunk-Anime-Diffusion", "dgs illustration style "),
     Model("Elden Ring", "nitrosocke/elden-ring-diffusion", "elden ring style "),
     Model("TrinArt v2", "naclbit/trinart_stable_diffusion_v2"),
     Model("Spider-Verse", "nitrosocke/spider-verse-diffusion", "spiderverse style "),
     Model("Balloon Art", "Fictiverse/Stable_Diffusion_BalloonArt_Model", "BalloonArt "),
     Model("Tron Legacy", "dallinmackay/Tron-Legacy-diffusion", "trnlgcy "),
     Model("Pokémon", "lambdalabs/sd-pokemon-diffusers"),
     Model("Pony Diffusion", "AstraliteHeart/pony-diffusion"),
     Model("Robo Diffusion", "nousr/robo-diffusion"),
     Model("Epic Diffusion", "johnslegers/epic-diffusion")
  ]

custom_model = None
if is_colab:
  models.insert(0, Model("Custom model"))
  custom_model = models[0]

last_mode = "txt2img"
current_model = models[1] if is_colab else models[0]
current_model_path = current_model.path

if is_colab:
  pipe = StableDiffusionPipeline.from_pretrained(
      current_model.path,
      torch_dtype=torch.float16,
      scheduler=DPMSolverMultistepScheduler.from_pretrained(current_model.path, subfolder="scheduler"),
      safety_checker=lambda images, clip_input: (images, False)
      )

else:
  pipe = StableDiffusionPipeline.from_pretrained(
      current_model.path,
      torch_dtype=torch.float16,
      scheduler=DPMSolverMultistepScheduler.from_pretrained(current_model.path, subfolder="scheduler")
      )
    
if torch.cuda.is_available():
  pipe = pipe.to("cuda")
  pipe.enable_xformers_memory_efficient_attention()

device = "GPU 🔥" if torch.cuda.is_available() else "CPU 🥶"

def error_str(error, title="Error"):
    return f"""#### {title}
            {error}"""  if error else ""

def update_state(new_state):
  global state
  state = new_state

def update_state_info(old_state):
  if state and state != old_state:
    return gr.update(value=state)

def custom_model_changed(path):
  models[0].path = path
  global current_model
  current_model = models[0]

def on_model_change(model_name):
  
  prefix = "Enter prompt. \"" + next((m.prefix for m in models if m.name == model_name), None) + "\" is prefixed automatically" if model_name != models[0].name else "Don't forget to use the custom model prefix in the prompt!"

  return gr.update(visible = model_name == models[0].name), gr.update(placeholder=prefix)

def on_steps_change(steps):
  global current_steps
  current_steps = steps

def pipe_callback(step: int, timestep: int, latents: torch.FloatTensor):
    update_state(f"{step}/{current_steps} steps")#\nTime left, sec: {timestep/100:.0f}")

def inference(model_name, prompt, guidance, steps, n_images=1, width=512, height=512, seed=0, img=None, strength=0.5, neg_prompt=""):

  update_state(" ")

  print(psutil.virtual_memory()) # print memory usage

  global current_model
  for model in models:
    if model.name == model_name:
      current_model = model
      model_path = current_model.path

  # generator = torch.Generator('cuda').manual_seed(seed) if seed != 0 else None
  if seed == 0:
    seed = random.randint(0, 2147483647)

  generator = torch.Generator('cuda').manual_seed(seed)

  try:
    if img is not None:
      return img_to_img(model_path, prompt, n_images, neg_prompt, img, strength, guidance, steps, width, height, generator, seed), f"Done. Seed: {seed}"
    else:
      return txt_to_img(model_path, prompt, n_images, neg_prompt, guidance, steps, width, height, generator, seed), f"Done. Seed: {seed}"
  except Exception as e:
    return None, error_str(e)

def txt_to_img(model_path, prompt, n_images, neg_prompt, guidance, steps, width, height, generator, seed):

    print(f"{datetime.datetime.now()} txt_to_img, model: {current_model.name}")

    global last_mode
    global pipe
    global current_model_path
    if model_path != current_model_path or last_mode != "txt2img":
        current_model_path = model_path

        update_state(f"Loading {current_model.name} text-to-image model...")

        if is_colab or current_model == custom_model:
          pipe = StableDiffusionPipeline.from_pretrained(
              current_model_path,
              torch_dtype=torch.float16,
              scheduler=DPMSolverMultistepScheduler.from_pretrained(current_model.path, subfolder="scheduler"),
              safety_checker=lambda images, clip_input: (images, False)
              )
        else:
          pipe = StableDiffusionPipeline.from_pretrained(
              current_model_path,
              torch_dtype=torch.float16,
              scheduler=DPMSolverMultistepScheduler.from_pretrained(current_model.path, subfolder="scheduler")
              )
          # pipe = pipe.to("cpu")
          # pipe = current_model.pipe_t2i

        if torch.cuda.is_available():
          pipe = pipe.to("cuda")
          pipe.enable_xformers_memory_efficient_attention()
        last_mode = "txt2img"

    prompt = current_model.prefix + prompt  
    result = pipe(
      prompt,
      negative_prompt = neg_prompt,
      num_images_per_prompt=n_images,
      num_inference_steps = int(steps),
      guidance_scale = guidance,
      width = width,
      height = height,
      generator = generator,
      callback=pipe_callback)

    # update_state(f"Done. Seed: {seed}")
    
    return replace_nsfw_images(result)

def img_to_img(model_path, prompt, n_images, neg_prompt, img, strength, guidance, steps, width, height, generator, seed):

    print(f"{datetime.datetime.now()} img_to_img, model: {model_path}")

    global last_mode
    global pipe
    global current_model_path
    if model_path != current_model_path or last_mode != "img2img":
        current_model_path = model_path

        update_state(f"Loading {current_model.name} image-to-image model...")

        if is_colab or current_model == custom_model:
          pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
              current_model_path,
              torch_dtype=torch.float16,
              scheduler=DPMSolverMultistepScheduler.from_pretrained(current_model.path, subfolder="scheduler"),
              safety_checker=lambda images, clip_input: (images, False)
              )
        else:
          pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
              current_model_path,
              torch_dtype=torch.float16,
              scheduler=DPMSolverMultistepScheduler.from_pretrained(current_model.path, subfolder="scheduler")
              )
          # pipe = pipe.to("cpu")
          # pipe = current_model.pipe_i2i
        
        if torch.cuda.is_available():
          pipe = pipe.to("cuda")
          pipe.enable_xformers_memory_efficient_attention()
        last_mode = "img2img"

    prompt = current_model.prefix + prompt
    ratio = min(height / img.height, width / img.width)
    img = img.resize((int(img.width * ratio), int(img.height * ratio)), Image.LANCZOS)
    result = pipe(
        prompt,
        negative_prompt = neg_prompt,
        num_images_per_prompt=n_images,
        image = img,
        num_inference_steps = int(steps),
        strength = strength,
        guidance_scale = guidance,
        # width = width,
        # height = height,
        generator = generator,
        callback=pipe_callback)

    # update_state(f"Done. Seed: {seed}")
        
    return replace_nsfw_images(result)

def replace_nsfw_images(results):

    if is_colab:
      return results.images
      
    for i in range(len(results.images)):
      if results.nsfw_content_detected[i]:
        results.images[i] = Image.open("nsfw.png")
    return results.images

# css = """.finetuned-diffusion-div div{display:inline-flex;align-items:center;gap:.8rem;font-size:1.75rem}.finetuned-diffusion-div div h1{font-weight:900;margin-bottom:7px}.finetuned-diffusion-div p{margin-bottom:10px;font-size:94%}a{text-decoration:underline}.tabs{margin-top:0;margin-bottom:0}#gallery{min-height:20rem}
# """
with gr.Blocks(css="style.css") as demo:
    gr.HTML(
        f"""
            <div class="finetuned-diffusion-div">
              <div>
                <h1>Finetuned Diffusion</h1>
              </div>
              <p>
               Demo for multiple fine-tuned Stable Diffusion models, trained on different styles: <br>
               <a href="https://huggingface.co/nitrosocke/Arcane-Diffusion">Arcane</a>, <a href="https://huggingface.co/nitrosocke/archer-diffusion">Archer</a>, <a href="https://huggingface.co/nitrosocke/elden-ring-diffusion">Elden Ring</a>, <a href="https://huggingface.co/nitrosocke/spider-verse-diffusion">Spider-Verse</a>, <a href="https://huggingface.co/nitrosocke/mo-di-diffusion">Modern Disney</a>, <a href="https://huggingface.co/nitrosocke/classic-anim-diffusion">Classic Disney</a>, <a href="https://huggingface.co/dallinmackay/Van-Gogh-diffusion">Loving Vincent (Van Gogh)</a>, <a href="https://huggingface.co/nitrosocke/redshift-diffusion">Redshift renderer (Cinema4D)</a>, <a href="https://huggingface.co/prompthero/midjourney-v4-diffusion">Midjourney v4 style</a>, <a href="https://huggingface.co/hakurei/waifu-diffusion">Waifu</a>, <a href="https://huggingface.co/lambdalabs/sd-pokemon-diffusers">Pokémon</a>, <a href="https://huggingface.co/AstraliteHeart/pony-diffusion">Pony Diffusion</a>, <a href="https://huggingface.co/nousr/robo-diffusion">Robo Diffusion</a>, <a href="https://huggingface.co/DGSpitzer/Cyberpunk-Anime-Diffusion">Cyberpunk Anime</a>, <a href="https://huggingface.co/dallinmackay/Tron-Legacy-diffusion">Tron Legacy</a>, <a href="https://huggingface.co/Fictiverse/Stable_Diffusion_BalloonArt_Model">Balloon Art</a> + in colab notebook you can load any other Diffusers 🧨 SD model hosted on HuggingFace 🤗.
              </p>
              <p>You can skip the queue and load custom models in the colab: <a href="https://colab.research.google.com/gist/qunash/42112fb104509c24fd3aa6d1c11dd6e0/copy-of-fine-tuned-diffusion-gradio.ipynb"><img data-canonical-src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab" src="https://camo.githubusercontent.com/84f0493939e0c4de4e6dbe113251b4bfb5353e57134ffd9fcab6b8714514d4d1/68747470733a2f2f636f6c61622e72657365617263682e676f6f676c652e636f6d2f6173736574732f636f6c61622d62616467652e737667"></a></p>
               Running on <b>{device}</b>{(" in a <b>Google Colab</b>." if is_colab else "")}
              </p>
              <p>You can also duplicate this space and upgrade to gpu by going to settings:<br>
              <a style="display:inline-block" href="https://huggingface.co/spaces/anzorq/finetuned_diffusion?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></p>
            </div>
        """
    )
    with gr.Row():
        
        with gr.Column(scale=55):
          with gr.Group():
              model_name = gr.Dropdown(label="Model", choices=[m.name for m in models], value=current_model.name)
              with gr.Box(visible=False) as custom_model_group:
                custom_model_path = gr.Textbox(label="Custom model path", placeholder="Path to model, e.g. nitrosocke/Arcane-Diffusion", interactive=True)
                gr.HTML("<div><font size='2'>Custom models have to be downloaded first, so give it some time.</font></div>")
              
              with gr.Row():
                prompt = gr.Textbox(label="Prompt", show_label=False, max_lines=2,placeholder="Enter prompt. Style applied automatically").style(container=False)
                generate = gr.Button(value="Generate").style(rounded=(False, True, True, False))


              # image_out = gr.Image(height=512)
              gallery = gr.Gallery(label="Generated images", show_label=False, elem_id="gallery").style(grid=[2], height="auto")
          
          state_info = gr.Textbox(label="State", show_label=False, max_lines=2).style(container=False)
          error_output = gr.Markdown()

        with gr.Column(scale=45):
          with gr.Tab("Options"):
            with gr.Group():
              neg_prompt = gr.Textbox(label="Negative prompt", placeholder="What to exclude from the image")

              n_images = gr.Slider(label="Images", value=1, minimum=1, maximum=4, step=1)

              with gr.Row():
                guidance = gr.Slider(label="Guidance scale", value=7.5, maximum=15)
                steps = gr.Slider(label="Steps", value=current_steps, minimum=2, maximum=75, step=1)

              with gr.Row():
                width = gr.Slider(label="Width", value=512, minimum=64, maximum=1024, step=8)
                height = gr.Slider(label="Height", value=512, minimum=64, maximum=1024, step=8)

              seed = gr.Slider(0, 2147483647, label='Seed (0 = random)', value=0, step=1)

          with gr.Tab("Image to image"):
              with gr.Group():
                image = gr.Image(label="Image", height=256, tool="editor", type="pil")
                strength = gr.Slider(label="Transformation strength", minimum=0, maximum=1, step=0.01, value=0.5)

    if is_colab:
        model_name.change(on_model_change, inputs=model_name, outputs=[custom_model_group, prompt], queue=False)
        custom_model_path.change(custom_model_changed, inputs=custom_model_path, outputs=None)
    # n_images.change(lambda n: gr.Gallery().style(grid=[2 if n > 1 else 1], height="auto"), inputs=n_images, outputs=gallery)
    steps.change(on_steps_change, inputs=[steps], outputs=[], queue=False)

    inputs = [model_name, prompt, guidance, steps, n_images, width, height, seed, image, strength, neg_prompt]
    outputs = [gallery, error_output]
    prompt.submit(inference, inputs=inputs, outputs=outputs)
    generate.click(inference, inputs=inputs, outputs=outputs)

    ex = gr.Examples([
        [models[7].name, "tiny cute and adorable kitten adventurer dressed in a warm overcoat with survival gear on a winters day", 7.5, 25],
        [models[4].name, "portrait of dwayne johnson", 7.0, 35],
        [models[5].name, "portrait of a beautiful alyx vance half life", 10, 25],
        [models[6].name, "Aloy from Horizon: Zero Dawn, half body portrait, smooth, detailed armor, beautiful face, illustration", 7.0, 30],
        [models[5].name, "fantasy portrait painting, digital art", 4.0, 20],
    ], inputs=[model_name, prompt, guidance, steps], outputs=outputs, fn=inference, cache_examples=False)

    gr.HTML("""
    <div style="border-top: 1px solid #303030;">
      <br>
      <p>Models by <a href="https://huggingface.co/nitrosocke">@nitrosocke</a>, <a href="https://twitter.com/haruu1367">@haruu1367</a>, <a href="https://twitter.com/DGSpitzer">@Helixngc7293</a>, <a href="https://twitter.com/dal_mack">@dal_mack</a>, <a href="https://twitter.com/prompthero">@prompthero</a> and others. ❤️</p>
      <p>This space uses the <a href="https://github.com/LuChengTHU/dpm-solver">DPM-Solver++</a> sampler by <a href="https://arxiv.org/abs/2206.00927">Cheng Lu, et al.</a>.</p>
      <p>Space by:<br>
      <a href="https://twitter.com/hahahahohohe"><img src="https://img.shields.io/twitter/follow/hahahahohohe?label=%40anzorq&style=social" alt="Twitter Follow"></a><br>
      <a href="https://github.com/qunash"><img alt="GitHub followers" src="https://img.shields.io/github/followers/qunash?style=social" alt="Github Follow"></a></p><br><br>
      <a href="https://www.buymeacoffee.com/anzorq" target="_blank"><img src="https://cdn.buymeacoffee.com/buttons/v2/default-yellow.png" alt="Buy Me A Coffee" style="height: 45px !important;width: 162px !important;" ></a><br><br>
      <p><img src="https://visitor-badge.glitch.me/badge?page_id=anzorq.finetuned_diffusion" alt="visitors"></p>
    </div>
    """)

    demo.load(update_state_info, inputs=state_info, outputs=state_info, every=0.5, show_progress=False)

print(f"Space built in {time.time() - start_time:.2f} seconds")

# if not is_colab:
demo.queue(concurrency_count=1)
demo.launch(debug=is_colab, share=is_colab)