Spaces:
Runtime error
Runtime error
import gradio as gr | |
import pandas as pd | |
from transformers import pipeline | |
from load_models import models_and_tokenizers, models_checkpoints | |
import spaces | |
choice = {"ModelA": "", "ModelB": ""} | |
dff = pd.read_csv("models.csv") | |
dff.to_html("tab.html") | |
def refreshfn() -> gr.HTML: | |
df = pd.read_csv("models.csv") | |
df.to_html("tab.html") | |
f = open("tab.html") | |
content = f.read() | |
f.close() | |
t = gr.HTML(content) | |
return t | |
def rewrite_csv_ordered_by_winning_rate(csv_path): | |
# Read the input CSV | |
df = pd.read_csv(csv_path) | |
# Sort the DataFrame by WINNING_RATE in descending order | |
df_sorted = df.sort_values(by="WINNING_RATE", ascending=False) | |
# Save the sorted DataFrame to a new CSV file | |
df_sorted.to_csv(csv_path, index=False) | |
def run_inference(pipeline, prompt): | |
response = pipeline(prompt) | |
bot_message = response[0]["generated_text"] | |
return bot_message | |
def modelA_button(): | |
global choice | |
df = pd.read_csv("models.csv") | |
df.loc[df["MODEL"] == choice["ModelA"], "MATCHES_WON"] += 1 | |
df.loc[df["MODEL"] == choice["ModelA"], "WINNING_RATE"] = df.loc[df["MODEL"] == choice["ModelA"], "MATCHES_WON"]/df.loc[df["MODEL"] == choice["ModelA"], "MATCHES_PLAYED"] | |
df.to_csv("models.csv", index=False) | |
rewrite_csv_ordered_by_winning_rate("models.csv") | |
def modelB_button(): | |
global choice | |
df = pd.read_csv("models.csv") | |
df.loc[df["MODEL"] == choice["ModelB"], "MATCHES_WON"] += 1 | |
df.loc[df["MODEL"] == choice["ModelB"], "WINNING_RATE"] = df.loc[df["MODEL"] == choice["ModelB"], "MATCHES_WON"]/df.loc[df["MODEL"] == choice["ModelB"], "MATCHES_PLAYED"] | |
df.to_csv("models.csv", index=False) | |
rewrite_csv_ordered_by_winning_rate("models.csv") | |
import time | |
def replyA(prompt, history, modelA): | |
global choice | |
choice["ModelA"] = modelA | |
df = pd.read_csv("models.csv") | |
df.loc[df["MODEL"] == modelA, "MATCHES_PLAYED"] += 1 | |
df.to_csv("models.csv", index=False) | |
pipeA = pipeline("text-generation", model=models_and_tokenizers[modelA][0], tokenizer=models_and_tokenizers[modelA][1], max_new_tokens=512, repetition_penalty=1.5, temperature=0.5, device_map="cuda:0") | |
responseA = run_inference(pipeA, prompt) | |
r = '' | |
for c in responseA: | |
r+=c | |
time.sleep(0.0001) | |
yield r | |
def replyB(prompt, history, modelB): | |
global choice | |
choice["ModelB"] = modelB | |
df = pd.read_csv("models.csv") | |
df.loc[df["MODEL"] == modelB, "MATCHES_PLAYED"] += 1 | |
df.to_csv("models.csv", index=False) | |
pipeB = pipeline("text-generation", model=models_and_tokenizers[modelB][0], tokenizer=models_and_tokenizers[modelB][1], max_new_tokens=512, repetition_penalty=1.5, temperature=0.5, device_map="cuda:0") | |
responseB = run_inference(pipeB, prompt) | |
r = '' | |
for c in responseB: | |
r+=c | |
time.sleep(0.0001) | |
yield r | |
modelAchoice = gr.Dropdown(models_checkpoints, label="Model A") | |
modelBchoice = gr.Dropdown(models_checkpoints, label="Model B") | |
with gr.Blocks() as demo2: | |
f = open("tab.html") | |
content = f.read() | |
f.close() | |
t = gr.HTML(content) | |
btn = gr.Button("Refresh") | |
btn.click(fn=refreshfn, inputs=None, outputs=t) | |
accrdnA = gr.Accordion(label="Choose model A", open=False) | |
accrdnB = gr.Accordion(label="Choose model B", open=False) | |
chtbA = gr.Chatbot(label="Chat with Model A", height=150) | |
chtbB = gr.Chatbot(label="Chat with Model B", height=150) | |
with gr.Blocks() as demo1: | |
with gr.Column(): | |
gr.HTML("""<h1 align='center'>SmolLM Arena</h1> | |
<h2 align='center'>Cast your vote to choose the best Small Language Model (100M-1.7B)!π</h2> | |
<h3 align='center'>[<a href="https://github.com/AstraBert/smollm-arena">GitHub</a>] [<a href="https://github.com/AstraBert/smollm-arena?tab=readme-ov-file#usage">Usage Guide</a>]""") | |
gr.ChatInterface(fn=replyA, chatbot=chtbA, additional_inputs=modelAchoice, additional_inputs_accordion=accrdnA, submit_btn="Submit to Model A") | |
gr.ChatInterface(fn=replyB, chatbot=chtbB, additional_inputs=modelBchoice, additional_inputs_accordion=accrdnB, submit_btn="Submit to Model B") | |
with gr.Column(): | |
btnA = gr.Button("Vote for Model A!") | |
btnB = gr.Button("Vote for Model B!") | |
btnA.click(modelA_button, inputs=None, outputs=None) | |
btnB.click(modelB_button, inputs=None, outputs=None) | |
demo = gr.TabbedInterface([demo1, demo2], ["Chat Arena", "Leaderboard"]) | |
if __name__ == "__main__": | |
demo.launch(server_name="0.0.0.0", server_port=7860) |