Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Commit
•
5decbb5
1
Parent(s):
9b08e5f
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,359 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
is_spaces = True if os.environ.get('SPACE_ID') else False
|
3 |
+
|
4 |
+
if(is_spaces):
|
5 |
+
import spaces
|
6 |
+
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
|
7 |
+
import sys
|
8 |
+
|
9 |
+
from dotenv import load_dotenv
|
10 |
+
load_dotenv()
|
11 |
+
|
12 |
+
# Add the current working directory to the Python path
|
13 |
+
sys.path.insert(0, os.getcwd())
|
14 |
+
|
15 |
+
import gradio as gr
|
16 |
+
from PIL import Image
|
17 |
+
import torch
|
18 |
+
import uuid
|
19 |
+
import os
|
20 |
+
import shutil
|
21 |
+
import json
|
22 |
+
import yaml
|
23 |
+
from slugify import slugify
|
24 |
+
from transformers import AutoProcessor, AutoModelForCausalLM
|
25 |
+
if(not is_spaces):
|
26 |
+
from toolkit.job import get_job
|
27 |
+
|
28 |
+
MAX_IMAGES = 150
|
29 |
+
|
30 |
+
def load_captioning(uploaded_images, concept_sentence):
|
31 |
+
updates = []
|
32 |
+
if len(uploaded_images) <= 1:
|
33 |
+
raise gr.Error(
|
34 |
+
"Please upload at least 2 images to train your model (the ideal number with default settings is between 4-30)"
|
35 |
+
)
|
36 |
+
elif len(uploaded_images) > MAX_IMAGES:
|
37 |
+
raise gr.Error(
|
38 |
+
f"For now, only {MAX_IMAGES} or less images are allowed for training"
|
39 |
+
)
|
40 |
+
# Update for the captioning_area
|
41 |
+
#for _ in range(3):
|
42 |
+
updates.append(gr.update(visible=True))
|
43 |
+
# Update visibility and image for each captioning row and image
|
44 |
+
for i in range(1, MAX_IMAGES + 1):
|
45 |
+
# Determine if the current row and image should be visible
|
46 |
+
visible = i <= len(uploaded_images)
|
47 |
+
|
48 |
+
# Update visibility of the captioning row
|
49 |
+
updates.append(gr.update(visible=visible))
|
50 |
+
|
51 |
+
# Update for image component - display image if available, otherwise hide
|
52 |
+
image_value = uploaded_images[i - 1] if visible else None
|
53 |
+
|
54 |
+
updates.append(gr.update(value=image_value, visible=visible))
|
55 |
+
|
56 |
+
#Update value of captioning area
|
57 |
+
text_value = "[trigger]" if visible and concept_sentence else None
|
58 |
+
updates.append(gr.update(value=text_value, visible=visible))
|
59 |
+
|
60 |
+
#Update for the sample caption area
|
61 |
+
updates.append(gr.update(visible=True))
|
62 |
+
updates.append(gr.update(placeholder=f'A photo of {concept_sentence} holding a sign that reads "Hello friend"'))
|
63 |
+
updates.append(gr.update(placeholder=f'A mountainous landscape in the style of {concept_sentence}'))
|
64 |
+
updates.append(gr.update(placeholder=f'A {concept_sentence} in a mall'))
|
65 |
+
return updates
|
66 |
+
|
67 |
+
if(is_spaces):
|
68 |
+
load_captioning = spaces.GPU()(load_captioning)
|
69 |
+
|
70 |
+
def create_dataset(*inputs):
|
71 |
+
print("Creating dataset")
|
72 |
+
images = inputs[0]
|
73 |
+
destination_folder = str(uuid.uuid4())
|
74 |
+
if not os.path.exists(destination_folder):
|
75 |
+
os.makedirs(destination_folder)
|
76 |
+
|
77 |
+
jsonl_file_path = os.path.join(destination_folder, 'metadata.jsonl')
|
78 |
+
with open(jsonl_file_path, 'a') as jsonl_file:
|
79 |
+
for index, image in enumerate(images):
|
80 |
+
new_image_path = shutil.copy(image, destination_folder)
|
81 |
+
|
82 |
+
original_caption = inputs[index + 1]
|
83 |
+
file_name = os.path.basename(new_image_path)
|
84 |
+
|
85 |
+
data = {"file_name": file_name, "prompt": original_caption}
|
86 |
+
|
87 |
+
jsonl_file.write(json.dumps(data) + "\n")
|
88 |
+
|
89 |
+
return destination_folder
|
90 |
+
|
91 |
+
def run_captioning(images, concept_sentence, *captions):
|
92 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
93 |
+
torch_dtype = torch.float16
|
94 |
+
model = AutoModelForCausalLM.from_pretrained("microsoft/Florence-2-large", torch_dtype=torch_dtype, trust_remote_code=True).to(device)
|
95 |
+
processor = AutoProcessor.from_pretrained("microsoft/Florence-2-large", trust_remote_code=True)
|
96 |
+
|
97 |
+
captions = list(captions)
|
98 |
+
for i, image_path in enumerate(images):
|
99 |
+
print(captions[i])
|
100 |
+
if isinstance(image_path, str): # If image is a file path
|
101 |
+
image = Image.open(image_path).convert('RGB')
|
102 |
+
|
103 |
+
prompt = "<DETAILED_CAPTION>"
|
104 |
+
inputs = processor(text=prompt, images=image, return_tensors="pt").to(device, torch_dtype)
|
105 |
+
|
106 |
+
generated_ids = model.generate(
|
107 |
+
input_ids=inputs["input_ids"],
|
108 |
+
pixel_values=inputs["pixel_values"],
|
109 |
+
max_new_tokens=1024,
|
110 |
+
num_beams=3
|
111 |
+
)
|
112 |
+
|
113 |
+
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
|
114 |
+
parsed_answer = processor.post_process_generation(generated_text, task=prompt, image_size=(image.width, image.height))
|
115 |
+
caption_text = parsed_answer['<DETAILED_CAPTION>'].replace("The image shows ", "")
|
116 |
+
if(concept_sentence):
|
117 |
+
caption_text = f"{caption_text} [trigger]"
|
118 |
+
captions[i] = caption_text
|
119 |
+
|
120 |
+
|
121 |
+
yield captions
|
122 |
+
model.to("cpu")
|
123 |
+
del model
|
124 |
+
del processor
|
125 |
+
|
126 |
+
def start_training(
|
127 |
+
lora_name,
|
128 |
+
concept_sentence,
|
129 |
+
steps,
|
130 |
+
lr,
|
131 |
+
rank,
|
132 |
+
dataset_folder,
|
133 |
+
sample_1,
|
134 |
+
sample_2,
|
135 |
+
sample_3,
|
136 |
+
):
|
137 |
+
if not lora_name:
|
138 |
+
raise gr.Error("You forgot to insert your LoRA name! This name has to be unique.")
|
139 |
+
print("Started training")
|
140 |
+
slugged_lora_name = slugify(lora_name)
|
141 |
+
|
142 |
+
# Load the default config
|
143 |
+
with open("config/examples/train_lora_flux_24gb.yaml", "r") as f:
|
144 |
+
config = yaml.safe_load(f)
|
145 |
+
|
146 |
+
# Update the config with user inputs
|
147 |
+
config['config']['name'] = slugged_lora_name
|
148 |
+
config['config']['process'][0]['model']['low_vram'] = True
|
149 |
+
config['config']['process'][0]['train']['skip_first_sample'] = True
|
150 |
+
config['config']['process'][0]['train']['steps'] = int(steps)
|
151 |
+
config['config']['process'][0]['train']['lr'] = float(lr)
|
152 |
+
config['config']['process'][0]['network']['linear'] = int(rank)
|
153 |
+
config['config']['process'][0]['network']['linear_alpha'] = int(rank)
|
154 |
+
config['config']['process'][0]['datasets'][0]['folder_path'] = dataset_folder
|
155 |
+
if(concept_sentence):
|
156 |
+
config['config']['process'][0]['trigger_word'] = concept_sentence
|
157 |
+
if(sample_1 or sample_2 or sample_2):
|
158 |
+
config['config']['process'][0]['train']['disable_sampling'] = False
|
159 |
+
config['config']['process'][0]['sample']["sample_every"] = steps
|
160 |
+
config['config']['process'][0]['sample']['prompts'] = []
|
161 |
+
if(sample_1):
|
162 |
+
config['config']['process'][0]['sample']['prompts'].append(sample_1)
|
163 |
+
if(sample_2):
|
164 |
+
config['config']['process'][0]['sample']['prompts'].append(sample_2)
|
165 |
+
if(sample_3):
|
166 |
+
config['config']['process'][0]['sample']['prompts'].append(sample_3)
|
167 |
+
else:
|
168 |
+
config['config']['process'][0]['train']['disable_sampling'] = True
|
169 |
+
# Save the updated config
|
170 |
+
config_path = f"config/{slugged_lora_name}.yaml"
|
171 |
+
with open(config_path, "w") as f:
|
172 |
+
yaml.dump(config, f)
|
173 |
+
|
174 |
+
job = get_job(config_path)
|
175 |
+
|
176 |
+
# Run the job
|
177 |
+
job.run()
|
178 |
+
job.cleanup()
|
179 |
+
|
180 |
+
return f"Training completed successfully. Model saved as {slugged_lora_name}"
|
181 |
+
|
182 |
+
def start_training_spaces(
|
183 |
+
lora_name,
|
184 |
+
concept_sentence,
|
185 |
+
steps,
|
186 |
+
lr,
|
187 |
+
rank,
|
188 |
+
dataset_folder,
|
189 |
+
sample_1,
|
190 |
+
sample_2,
|
191 |
+
sample_3,
|
192 |
+
):
|
193 |
+
#Feel free to include the spacerunner stuff here @abhishek
|
194 |
+
pass
|
195 |
+
|
196 |
+
theme = gr.themes.Monochrome(
|
197 |
+
text_size=gr.themes.Size(lg="18px", md="15px", sm="13px", xl="22px", xs="12px", xxl="24px", xxs="9px"),
|
198 |
+
font=[gr.themes.GoogleFont('Source Sans Pro'), 'ui-sans-serif', 'system-ui', 'sans-serif'],
|
199 |
+
)
|
200 |
+
css = '''
|
201 |
+
#component-1{text-align:center}
|
202 |
+
.main_ui_logged_out{opacity: 0.5; poiner-events: none}
|
203 |
+
.tabitem{border: 0px}
|
204 |
+
'''
|
205 |
+
|
206 |
+
def swap_visibilty(profile: gr.OAuthProfile | None):
|
207 |
+
print(profile)
|
208 |
+
if(is_spaces):
|
209 |
+
if profile is None:
|
210 |
+
return gr.update(elem_classes=["main_ui_logged_out"])
|
211 |
+
else:
|
212 |
+
print(profile.name)
|
213 |
+
return gr.update(elem_classes=["main_ui_logged_in"])
|
214 |
+
else:
|
215 |
+
gr.update(elem_classes=["main_ui_logged_in"])
|
216 |
+
|
217 |
+
with gr.Blocks(theme=theme, css=css) as demo:
|
218 |
+
gr.Markdown('''# LoRA Ease for FLUX 🧞♂️
|
219 |
+
### Train a high quality FLUX LoRA in a breeze ༄ using [Ostris' AI Toolkit](https://github.com/ostris/ai-toolkit) and [AutoTrain Advanced](https://github.com/huggingface/autotrain-advanced)''')
|
220 |
+
gr.LoginButton(visible=is_spaces)
|
221 |
+
with gr.Tab("Train on Spaces" if is_spaces else "Train locally"):
|
222 |
+
with gr.Column(elem_classes="main_ui_logged_out") as main_ui:
|
223 |
+
with gr.Row():
|
224 |
+
lora_name = gr.Textbox(label="The name of your LoRA", info="This has to be a unique name", placeholder="e.g.: Persian Miniature Painting style, Cat Toy")
|
225 |
+
#training_option = gr.Radio(
|
226 |
+
# label="What are you training?", choices=["object", "style", "character", "face", "custom"]
|
227 |
+
#)
|
228 |
+
concept_sentence = gr.Textbox(
|
229 |
+
label="Trigger word/sentence",
|
230 |
+
info="Trigger word or sentence to be used",
|
231 |
+
placeholder="uncommon word like p3rs0n or trtcrd, or sentence like 'in the style of CNSTLL'",
|
232 |
+
interactive=True,
|
233 |
+
)
|
234 |
+
with gr.Group(visible=True) as image_upload:
|
235 |
+
with gr.Row():
|
236 |
+
images = gr.File(
|
237 |
+
file_types=["image"],
|
238 |
+
label="Upload your images",
|
239 |
+
file_count="multiple",
|
240 |
+
interactive=True,
|
241 |
+
visible=True,
|
242 |
+
scale=1,
|
243 |
+
)
|
244 |
+
with gr.Column(scale=3, visible=False) as captioning_area:
|
245 |
+
with gr.Column():
|
246 |
+
gr.Markdown("""# Custom captioning
|
247 |
+
You can optionally add a custom caption for each image (or use an AI model for this). [trigger] will represent your concept sentence/trigger word.
|
248 |
+
""")
|
249 |
+
do_captioning = gr.Button("Add AI captions with Florence-2")
|
250 |
+
output_components = [captioning_area]
|
251 |
+
caption_list = []
|
252 |
+
for i in range(1, MAX_IMAGES + 1):
|
253 |
+
locals()[f"captioning_row_{i}"] = gr.Row(visible=False)
|
254 |
+
with locals()[f"captioning_row_{i}"]:
|
255 |
+
locals()[f"image_{i}"] = gr.Image(
|
256 |
+
type="filepath",
|
257 |
+
width=111,
|
258 |
+
height=111,
|
259 |
+
min_width=111,
|
260 |
+
interactive=False,
|
261 |
+
scale=2,
|
262 |
+
show_label=False,
|
263 |
+
show_share_button=False,
|
264 |
+
show_download_button=False
|
265 |
+
)
|
266 |
+
locals()[f"caption_{i}"] = gr.Textbox(
|
267 |
+
label=f"Caption {i}", scale=15, interactive=True
|
268 |
+
)
|
269 |
+
|
270 |
+
output_components.append(locals()[f"captioning_row_{i}"])
|
271 |
+
output_components.append(locals()[f"image_{i}"])
|
272 |
+
output_components.append(locals()[f"caption_{i}"])
|
273 |
+
caption_list.append(locals()[f"caption_{i}"])
|
274 |
+
|
275 |
+
with gr.Accordion("Advanced options", open=False):
|
276 |
+
steps = gr.Number(label="Steps", value=1000, minimum=1, maximum=10000, step=1)
|
277 |
+
lr = gr.Number(label="Learning Rate", value=4e-4, minimum=1e-6, maximum=1e-3, step=1e-6)
|
278 |
+
rank = gr.Number(label="LoRA Rank", value=16, minimum=4, maximum=128, step=4)
|
279 |
+
|
280 |
+
with gr.Accordion("Sample prompts", visible=False) as sample:
|
281 |
+
gr.Markdown("Include sample prompts to test out your trained model. Don't forget to include your trigger word/sentence (optional)")
|
282 |
+
sample_1 = gr.Textbox(label="Test prompt 1")
|
283 |
+
sample_2 = gr.Textbox(label="Test prompt 2")
|
284 |
+
sample_3 = gr.Textbox(label="Test prompt 3")
|
285 |
+
|
286 |
+
output_components.append(sample)
|
287 |
+
output_components.append(sample_1)
|
288 |
+
output_components.append(sample_2)
|
289 |
+
output_components.append(sample_3)
|
290 |
+
start = gr.Button("Start training")
|
291 |
+
progress_area = gr.Markdown("")
|
292 |
+
|
293 |
+
with gr.Tab("Train locally" if is_spaces else "Instructions"):
|
294 |
+
gr.Markdown(f'''To use FLUX LoRA Ease locally with this UI, you can clone this repository (yes, HF Spaces are git repos!)
|
295 |
+
```bash
|
296 |
+
git clone https://huggingface.co/spaces/flux-train/flux-lora-trainer
|
297 |
+
cd flux-lora-trainer
|
298 |
+
```
|
299 |
+
|
300 |
+
Then you can install ai-toolkit
|
301 |
+
```bash
|
302 |
+
git clone https://github.com/ostris/ai-toolkit.git
|
303 |
+
cd ai-toolkit
|
304 |
+
git submodule update --init --recursive
|
305 |
+
python3 -m venv venv
|
306 |
+
source venv/bin/activate
|
307 |
+
# .\venv\Scripts\activate on windows
|
308 |
+
# install torch first
|
309 |
+
pip3 install torch
|
310 |
+
pip3 install -r requirements.txt
|
311 |
+
cd ..
|
312 |
+
```
|
313 |
+
|
314 |
+
Now you can run FLUX LoRA Ease locally by doing a simple
|
315 |
+
```py
|
316 |
+
python app.py
|
317 |
+
```
|
318 |
+
If you prefer command line, you can run Ostris' [AI Toolkit](https://github.com/ostris/ai-toolkit) yourself.
|
319 |
+
''')
|
320 |
+
|
321 |
+
dataset_folder = gr.State()
|
322 |
+
|
323 |
+
images.upload(
|
324 |
+
load_captioning,
|
325 |
+
inputs=[images, concept_sentence],
|
326 |
+
outputs=output_components,
|
327 |
+
queue=False
|
328 |
+
)
|
329 |
+
|
330 |
+
start.click(
|
331 |
+
fn=create_dataset,
|
332 |
+
inputs=[images] + caption_list,
|
333 |
+
outputs=dataset_folder,
|
334 |
+
queue=False
|
335 |
+
).then(
|
336 |
+
fn=start_training_spaces if is_spaces else start_training,
|
337 |
+
inputs=[
|
338 |
+
lora_name,
|
339 |
+
concept_sentence,
|
340 |
+
steps,
|
341 |
+
lr,
|
342 |
+
rank,
|
343 |
+
dataset_folder,
|
344 |
+
sample_1,
|
345 |
+
sample_2,
|
346 |
+
sample_3,
|
347 |
+
],
|
348 |
+
outputs=progress_area,
|
349 |
+
queue=False
|
350 |
+
)
|
351 |
+
|
352 |
+
do_captioning.click(
|
353 |
+
fn=run_captioning, inputs=[images, concept_sentence] + caption_list, outputs=caption_list
|
354 |
+
)
|
355 |
+
demo.load(fn=swap_visibilty, outputs=main_ui, queue=False)
|
356 |
+
|
357 |
+
if __name__ == "__main__":
|
358 |
+
demo.queue()
|
359 |
+
demo.launch(share=True)
|