CSVSentiment / app.py
awacke1's picture
Create new file
f9ae357
import gradio as gr
import pandas as pd
import numpy as np
import spacy
from spacy import displacy
from transformers import AutoTokenizer, AutoModelForSequenceClassification, Trainer
def linkify():
import pandas as pd
import streamlit as st
link1 = "https://stackoverflow.com/questions/71641666/hyperlink-in-streamlit-dataframe"
link2 = "https://stackoverflow.com/questions/71731937/how-to-plot-comparison-in-streamlit-dynamically-with-multiselect"
df = pd.DataFrame(
{
"url": [
f'<a target="_blank" href="{link1}">Hyperlink in Streamlit dataframe</a>',
f'<a target="_blank" href="{link2}">How to plot comparison in Streamlit dynamically with multiselect?</a>'
],
"label": ["question", "question"]
}
)
doc=df.to_html(escape=False, index=False)
html = displacy.render(doc, style="dep", page=True)
return html
# summary function - test for single gradio function interfrace
def bulk_function(filename):
# Create class for data preparation
class SimpleDataset:
def __init__(self, tokenized_texts):
self.tokenized_texts = tokenized_texts
def __len__(self):
return len(self.tokenized_texts["input_ids"])
def __getitem__(self, idx):
return {k: v[idx] for k, v in self.tokenized_texts.items()}
html = linkify()
gradio.HTML(html)
# load tokenizer and model, create trainer
model_name = "j-hartmann/emotion-english-distilroberta-base"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)
trainer = Trainer(model=model)
print(filename, type(filename))
print(filename.name)
# check type of input file
if filename.name.split(".")[1] == "csv":
print("entered")
# read file, drop index if exists
df_input = pd.read_csv(filename.name, index_col=False)
if df_input.columns[0] == "Unnamed: 0":
df_input = df_input.drop("Unnamed: 0", axis=1)
elif filename.name.split(".")[1] == "xlsx":
df_input = pd.read_excel(filename.name, index_col=False)
# handle Unnamed
if df_input.columns[0] == "Unnamed: 0":
df_input = df_input.drop("Unnamed: 0", axis=1)
else:
return
# read csv
# even if index given, drop it
#df_input = pd.read_csv(filename.name, index_col=False)
#print("df_input", df_input)
# expect csv format to be in:
# 1: ID
# 2: Texts
# no index
# store ids in ordered list
ids = df_input[df_input.columns[0]].to_list()
# store sentences in ordered list
# expects sentences to be in second col
# of csv with two cols
lines_s = df_input[df_input.columns[1]].to_list()
# Tokenize texts and create prediction data set
tokenized_texts = tokenizer(lines_s,truncation=True,padding=True)
pred_dataset = SimpleDataset(tokenized_texts)
# Run predictions -> predict whole df
predictions = trainer.predict(pred_dataset)
# Transform predictions to labels
preds = predictions.predictions.argmax(-1)
labels = pd.Series(preds).map(model.config.id2label)
scores = (np.exp(predictions[0])/np.exp(predictions[0]).sum(-1,keepdims=True)).max(1)
# round scores
scores_rounded = [round(score, 3) for score in scores]
# scores raw
temp = (np.exp(predictions[0])/np.exp(predictions[0]).sum(-1,keepdims=True))
# container
anger = []
disgust = []
fear = []
joy = []
neutral = []
sadness = []
surprise = []
# extract scores (as many entries as exist in pred_texts)
for i in range(len(lines_s)):
anger.append(round(temp[i][0], 3))
disgust.append(round(temp[i][1], 3))
fear.append(round(temp[i][2], 3))
joy.append(round(temp[i][3], 3))
neutral.append(round(temp[i][4], 3))
sadness.append(round(temp[i][5], 3))
surprise.append(round(temp[i][6], 3))
# define df
df = pd.DataFrame(list(zip(ids,lines_s,labels,scores_rounded, anger, disgust, fear, joy, neutral, sadness, surprise)), columns=[df_input.columns[0], df_input.columns[1],'max_label','max_score', 'anger', 'disgust', 'fear', 'joy', 'neutral', 'sadness', 'surprise'])
print(df)
# save results to csv
YOUR_FILENAME = filename.name.split(".")[0] + "_emotion_predictions" + ".csv" # name your output file
df.to_csv(YOUR_FILENAME, index=False)
# return dataframe for space output
return YOUR_FILENAME
gr.Interface(bulk_function,
inputs=[gr.inputs.File(file_count="single", type="file", label="Upload file", optional=False),],
outputs=[gr.outputs.File(label="Output file")],
# examples=[["YOUR_FILENAME.csv"]], # computes, doesn't export df so far
#["highlight", "json", "html"],
theme="huggingface",
title="Emotion Classification from CSV",
description="Upload csv file with 2 columns (in order): (a) ID column, (b) text column. Model: https://huggingface.co/j-hartmann/emotion-english-distilroberta-base.",
allow_flagging=False,
).launch(debug=True)