Spaces:
Runtime error
Runtime error
Update README.md
Browse files
README.md
CHANGED
@@ -4,40 +4,46 @@ emoji: 🐠🔬🧠
|
|
4 |
colorFrom: gray
|
5 |
colorTo: blue
|
6 |
sdk: streamlit
|
7 |
-
sdk_version: 1.
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: mit
|
11 |
---
|
12 |
|
13 |
|
14 |
-
GPT-4o Documentation:
|
|
|
15 |
|
16 |
-
|
17 |
-
|
18 |
-
This experimental multi agent mixture of expert system uses a variety of techniques and models to create different combinatorial AI solutions.
|
19 |
|
20 |
Models Used:
|
21 |
|
22 |
-
Mistral-7B-Instruct
|
23 |
-
Llama2-7B
|
24 |
-
Mixtral-8x7B-Instruct
|
25 |
-
Google Gemma-7B
|
26 |
-
OpenAI Whisper Small En
|
27 |
-
OpenAI GPT-4o, Whisper-1
|
28 |
-
ArXiV Embeddings
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
The intent is to demonstrate SOTA AI/ML and combinations of Function-Input-Output for interoperability and knowledge management.
|
43 |
|
@@ -201,15 +207,4 @@ def main():
|
|
201 |
st.rerun()
|
202 |
|
203 |
if __name__ == "__main__":
|
204 |
-
main()
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
|
|
4 |
colorFrom: gray
|
5 |
colorTo: blue
|
6 |
sdk: streamlit
|
7 |
+
sdk_version: 1.38.0
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: mit
|
11 |
---
|
12 |
|
13 |
|
14 |
+
# GPT-4o Documentation:
|
15 |
+
https://cookbook.openai.com/examples/gpt4o/introduction_to_gpt4o
|
16 |
|
17 |
+
This multi-agent mixture of expert system uses a variety of techniques and multiple model flows to create combinatorial AI solutions.
|
|
|
|
|
18 |
|
19 |
Models Used:
|
20 |
|
21 |
+
1. Mistral-7B-Instruct
|
22 |
+
2. Llama2-7B
|
23 |
+
3. Mixtral-8x7B-Instruct
|
24 |
+
4. Google Gemma-7B
|
25 |
+
5. OpenAI Whisper Small En
|
26 |
+
6. OpenAI GPT-4o, Whisper-1
|
27 |
+
7. ArXiV Embeddings
|
28 |
+
|
29 |
+
|
30 |
+
The AI techniques used aare below:
|
31 |
+
|
32 |
+
1. Speech Synthesis using browser technology
|
33 |
+
2. Memory for semantic facts, and episodic emotional and event time series memories
|
34 |
+
3. Web integration using the q= standard for search linking allowing comparison of tech giant AI implementations:
|
35 |
+
4. Bing then Bing copilot with click 2
|
36 |
+
5. Google which does an AI search now
|
37 |
+
6. Twitter, the new home for technology discoveries, AI Output and Grok
|
38 |
+
7. Wikipedia for fact checking
|
39 |
+
8. YouTube
|
40 |
+
|
41 |
+
Features:
|
42 |
+
|
43 |
+
1. The app manages these as direct web links to the search and AI engines using q= request parameters like most search engines.
|
44 |
+
2. This allows deep link bookmarks that bring you back to inputs and outputs by type of model.
|
45 |
+
3. File and metadata integration combining text, audio, image, and video
|
46 |
+
4. This app also merges common theories in cognitive AI, AI with python libraries (e.g. NLTK, SKLearn).
|
47 |
|
48 |
The intent is to demonstrate SOTA AI/ML and combinations of Function-Input-Output for interoperability and knowledge management.
|
49 |
|
|
|
207 |
st.rerun()
|
208 |
|
209 |
if __name__ == "__main__":
|
210 |
+
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|