Spaces:
Runtime error
Runtime error
Create new file
Browse files- source/pipeline.py +127 -0
source/pipeline.py
ADDED
@@ -0,0 +1,127 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from datasets import Dataset
|
5 |
+
from torch.utils.data import DataLoader
|
6 |
+
from tqdm import tqdm
|
7 |
+
from transformers import PerceiverTokenizer
|
8 |
+
|
9 |
+
|
10 |
+
def _map_outputs(predictions):
|
11 |
+
"""
|
12 |
+
Map model outputs to classes.
|
13 |
+
:param predictions: model ouptut batch
|
14 |
+
:return:
|
15 |
+
"""
|
16 |
+
|
17 |
+
labels = [
|
18 |
+
"admiration",
|
19 |
+
"amusement",
|
20 |
+
"anger",
|
21 |
+
"annoyance",
|
22 |
+
"approval",
|
23 |
+
"caring",
|
24 |
+
"confusion",
|
25 |
+
"curiosity",
|
26 |
+
"desire",
|
27 |
+
"disappointment",
|
28 |
+
"disapproval",
|
29 |
+
"disgust",
|
30 |
+
"embarrassment",
|
31 |
+
"excitement",
|
32 |
+
"fear",
|
33 |
+
"gratitude",
|
34 |
+
"grief",
|
35 |
+
"joy",
|
36 |
+
"love",
|
37 |
+
"nervousness",
|
38 |
+
"optimism",
|
39 |
+
"pride",
|
40 |
+
"realization",
|
41 |
+
"relief",
|
42 |
+
"remorse",
|
43 |
+
"sadness",
|
44 |
+
"surprise",
|
45 |
+
"neutral"
|
46 |
+
]
|
47 |
+
classes = []
|
48 |
+
for i, example in enumerate(predictions):
|
49 |
+
out_batch = []
|
50 |
+
for j, category in enumerate(example):
|
51 |
+
out_batch.append(labels[j]) if category > 0.5 else None
|
52 |
+
classes.append(out_batch)
|
53 |
+
return classes
|
54 |
+
|
55 |
+
|
56 |
+
class MultiLabelPipeline:
|
57 |
+
"""
|
58 |
+
Multi label classification pipeline.
|
59 |
+
"""
|
60 |
+
|
61 |
+
def __init__(self, model_path):
|
62 |
+
"""
|
63 |
+
Init MLC pipeline.
|
64 |
+
:param model_path: model to use
|
65 |
+
"""
|
66 |
+
|
67 |
+
# Init attributes
|
68 |
+
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
69 |
+
if self.device == 'cuda':
|
70 |
+
self.model = torch.load(model_path).eval().to(self.device)
|
71 |
+
else:
|
72 |
+
self.model = torch.load(model_path, map_location=torch.device('cpu')).eval().to(self.device)
|
73 |
+
self.tokenizer = PerceiverTokenizer.from_pretrained('deepmind/language-perceiver')
|
74 |
+
|
75 |
+
def __call__(self, dataset, batch_size: int = 4):
|
76 |
+
"""
|
77 |
+
Processing pipeline.
|
78 |
+
:param dataset: dataset
|
79 |
+
:return:
|
80 |
+
"""
|
81 |
+
|
82 |
+
# Tokenize inputs
|
83 |
+
dataset = dataset.map(lambda row: self.tokenizer(row['text'], padding="max_length", truncation=True),
|
84 |
+
batched=True, remove_columns=['text'], desc='Tokenizing')
|
85 |
+
dataset.set_format('torch', columns=['input_ids', 'attention_mask'])
|
86 |
+
dataloader = DataLoader(dataset, batch_size=batch_size)
|
87 |
+
|
88 |
+
# Define output classes
|
89 |
+
classes = []
|
90 |
+
mem_logs = []
|
91 |
+
|
92 |
+
with tqdm(dataloader, unit='batches') as progression:
|
93 |
+
for batch in progression:
|
94 |
+
progression.set_description('Inference')
|
95 |
+
# Forward
|
96 |
+
outputs = self.model(inputs=batch['input_ids'].to(self.device),
|
97 |
+
attention_mask=batch['attention_mask'].to(self.device), )
|
98 |
+
|
99 |
+
# Outputs
|
100 |
+
predictions = outputs.logits.cpu().detach().numpy()
|
101 |
+
|
102 |
+
# Map predictions to classes
|
103 |
+
batch_classes = _map_outputs(predictions)
|
104 |
+
|
105 |
+
for row in batch_classes:
|
106 |
+
classes.append(row)
|
107 |
+
|
108 |
+
# Retrieve memory usage
|
109 |
+
memory = round(torch.cuda.memory_reserved(self.device) / 1e9, 2)
|
110 |
+
mem_logs.append(memory)
|
111 |
+
|
112 |
+
# Update pbar
|
113 |
+
progression.set_postfix(memory=f"{round(sum(mem_logs) / len(mem_logs), 2)}Go")
|
114 |
+
|
115 |
+
return classes
|
116 |
+
|
117 |
+
|
118 |
+
def inputs_to_dataset(inputs: List[str]):
|
119 |
+
"""
|
120 |
+
Convert a list of strings to a dataset object.
|
121 |
+
:param inputs: list of strings
|
122 |
+
:return:
|
123 |
+
"""
|
124 |
+
|
125 |
+
inputs = {'text': [input for input in inputs]}
|
126 |
+
|
127 |
+
return Dataset.from_dict(inputs)
|