File size: 5,564 Bytes
140793a
0b15f14
140793a
 
0b15f14
140793a
 
0b15f14
140793a
 
0b15f14
 
140793a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b15f14
140793a
0b15f14
140793a
 
 
0b15f14
140793a
0b15f14
140793a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import json
import os
import shutil
import requests

import gradio as gr
from huggingface_hub import Repository, InferenceClient

HF_TOKEN = os.environ.get("HF_TOKEN", None)
API_URL = "https://api-inference.huggingface.co/models/hf-extreme-scalcon-180B-chat "
BOT_NAME = "Falcon"

STOP_SEQUENCES = ["\nUser:", "<|endoftext|>", " User:", "###"]

EXAMPLES = [
    ["Hey Falcon! Any recommendations for my holidays in Abu Dhabi?"],
    ["What's the Everett interpretation of quantum mechanics?"],
    ["Give me a list of the top 10 dive sites you would recommend around the world."],
    ["Can you tell me more about deep-water soloing?"],
    ["Can you write a short tweet about the release of our latest AI model, Falcon LLM?"]
    ]

client = InferenceClient(
    API_URL,
    headers={"Authorization": f"Bearer {HF_TOKEN}"},
)

def format_prompt(message, history, system_prompt):
  prompt = ""
  if system_prompt:
    prompt += f"System: {system_prompt}\n"
  for user_prompt, bot_response in history:
    prompt += f"User: {user_prompt}\n"
    prompt += f"Falcon: {bot_response}\n" # Response already contains "Falcon: "
  prompt += f"""User: {message}
Falcon:"""
  return prompt

def generate(
    prompt, history, system_prompt="", temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0,
):
    temperature = float(temperature)
    if temperature < 1e-2:
        temperature = 1e-2
    top_p = float(top_p)

    generate_kwargs = dict(
        temperature=temperature,
        max_new_tokens=max_new_tokens,
        top_p=top_p,
        repetition_penalty=repetition_penalty,
        stop_sequences=STOP_SEQUENCES,
        do_sample=True,
        seed=42,
    )

    formatted_prompt = format_prompt(prompt, history, system_prompt)
    print(formatted_prompt)

    stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
    output = ""

    previous_token = ""
    for response in stream:
        output += response.token.text

        for stop_str in STOP_SEQUENCES:
            if output.endswith(stop_str):
                output = output[:-len(stop_str)]
                output = output.rstrip()
                yield output

        previous_token = response.token.text
        yield output
    return output


additional_inputs=[
    gr.Textbox("", label="Optional system prompt"),
    gr.Slider(
        label="Temperature",
        value=0.9,
        minimum=0.0,
        maximum=1.0,
        step=0.05,
        interactive=True,
        info="Higher values produce more diverse outputs",
    ),
    gr.Slider(
        label="Max new tokens",
        value=256,
        minimum=0,
        maximum=8192,
        step=64,
        interactive=True,
        info="The maximum numbers of new tokens",
    ),
    gr.Slider(
        label="Top-p (nucleus sampling)",
        value=0.90,
        minimum=0.0,
        maximum=1,
        step=0.05,
        interactive=True,
        info="Higher values sample more low-probability tokens",
    ),
    gr.Slider(
        label="Repetition penalty",
        value=1.2,
        minimum=1.0,
        maximum=2.0,
        step=0.05,
        interactive=True,
        info="Penalize repeated tokens",
    )
]


with gr.Blocks() as demo:
    with gr.Row():
        with gr.Column():
            gr.Image("home-banner.jpg", elem_id="banner-image", show_label=False)
        with gr.Column():
            gr.Markdown(
                """**Chat with [Falcon-40B-Instruct](https://huggingface.co/tiiuae/falcon-40b-instruct), brainstorm ideas, discuss your holiday plans, and more!**
                
                ✨ This demo is powered by [Falcon-40B](https://huggingface.co/tiiuae/falcon-40b), finetuned on the [Baize](https://github.com/project-baize/baize-chatbot) dataset. [Falcon-40B](https://huggingface.co/tiiuae/falcon-40b) is a state-of-the-art large language model built by the [Technology Innovation Institute](https://www.tii.ae) in Abu Dhabi. It is trained on 1 trillion tokens (including [RefinedWeb](https://huggingface.co/datasets/tiiuae/falcon-refinedweb)) and available under the Apache 2.0 license. It currently holds the 🥇 1st place on the [🤗 Open LLM leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). 
                
                🧪 This is only a **first experimental preview**: we intend to provide increasingly capable versions of Falcon Chat in the future, based on improved datasets and RLHF/RLAIF.
                
                👀 **Learn more about Falcon LLM:** [falconllm.tii.ae](https://falconllm.tii.ae/)
                
                ➡️️ **Intended Use**: this demo is intended to showcase an early finetuning of [Falcon-40B](https://huggingface.co/tiiuae/falcon-40b), to illustrate the impact (and limitations) of finetuning on a dataset of conversations and instructions. We encourage the community to further build upon the base model, and to create even better instruct/chat versions!
                
                ⚠️ **Limitations**: the model can and will produce factually incorrect information, hallucinating facts and actions. As it has not undergone any advanced tuning/alignment, it can produce problematic outputs, especially if prompted to do so. Finally, this demo is limited to a session length of about 1,000 words.
                """
            )

    gr.ChatInterface(
        generate, 
        examples=EXAMPLES,
        additional_inputs=additional_inputs,
    ) 

demo.queue(concurrency_count=16).launch(debug=True)