Spaces:
Runtime error
Runtime error
import gradio as gr | |
from test import inference_img | |
from models import * | |
import numpy as np | |
from PIL import Image | |
device='cpu' | |
model = StyleMatte() | |
model = model.to(device) | |
checkpoint = f"stylematte.pth" | |
state_dict = torch.load(checkpoint, map_location=f'{device}') | |
model.load_state_dict(state_dict) | |
model.eval() | |
def predict(inp): | |
print("***********Inference****************") | |
mask = inference_img(model, inp) | |
inp_np = np.array(inp) | |
fg = np.uint8((mask[:,:,None]*inp_np)) | |
alpha_channel = (mask*255).astype(np.uint8) | |
print(fg.max(), alpha_channel.max(), fg.shape, alpha_channel.shape) | |
print("***********Inference finish****************") | |
# print("***********MASK****************", inp_np.max(), mask.max()) | |
fg = np.dstack((fg, alpha_channel)) | |
fg_pil = Image.fromarray(fg, 'RGBA') | |
return [mask, fg_pil] | |
print("MODEL LOADED") | |
print("************************************") | |
iface = gr.Interface(fn=predict, | |
inputs=gr.Image(type="numpy"), | |
outputs=[gr.Image(type="numpy"),gr.Image(type="pil", image_mode='RGBA')], | |
examples=["./logo.jpeg"]) | |
print("****************Interface created******************") | |
iface.launch() |