cafepoetica commited on
Commit
092632e
1 Parent(s): 8947d28

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +24 -16
app.py CHANGED
@@ -2,17 +2,20 @@ import streamlit as st
2
  import os
3
  from PyPDF2 import PdfReader
4
  from langchain.text_splitter import RecursiveCharacterTextSplitter
5
- from langchain.embeddings import HuggingFaceEmbeddings
6
  from langchain.vectorstores import FAISS
7
  from langchain.chat_models import ChatOpenAI
8
  from langchain.chains.question_answering import load_qa_chain
9
 
10
- st.set_page_config('Mi tech personal')
11
  st.header("Pregunta a tu teach")
 
 
12
  OPENAI_API_KEY = st.text_input('OpenAI API Key', type='password')
13
- pdf_obj = st.file_uploader("Carga tu documento", type="pdf", on_change=st.cache_resource.clear)
14
 
15
- @st.cache_resource
 
16
  def create_embeddings(pdf):
17
  pdf_reader = PdfReader(pdf)
18
  text = ""
@@ -23,7 +26,7 @@ def create_embeddings(pdf):
23
  chunk_size=800,
24
  chunk_overlap=100,
25
  length_function=len
26
- )
27
  chunks = text_splitter.split_text(text)
28
 
29
  embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2")
@@ -31,15 +34,20 @@ def create_embeddings(pdf):
31
 
32
  return knowledge_base
33
 
34
- if pdf_obj:
35
- knowledge_base = create_embeddings(pdf_obj)
36
- user_question = st.text_input("Haz una pregunta sobre tu PDF:")
37
-
38
- if user_question:
39
- os.environ["OPENAI_API_KEY"] = OPENAI_API_KEY
40
- docs = knowledge_base.similarity_search(user_question, 3)
41
- llm = ChatOpenAI(model_name='gpt-3.5-turbo')
42
- chain = load_qa_chain(llm, chain_type="stuff")
43
- respuesta = chain.run(input_documents=docs, question=user_question)
44
 
45
- st.write(respuesta)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  import os
3
  from PyPDF2 import PdfReader
4
  from langchain.text_splitter import RecursiveCharacterTextSplitter
5
+ from langchain.embeddings import HuggingFaceEmbeddings
6
  from langchain.vectorstores import FAISS
7
  from langchain.chat_models import ChatOpenAI
8
  from langchain.chains.question_answering import load_qa_chain
9
 
10
+ st.set_page_config(page_title='Mi tech personal', page_icon=':books:')
11
  st.header("Pregunta a tu teach")
12
+
13
+ # Configurar la clave de API de OpenAI
14
  OPENAI_API_KEY = st.text_input('OpenAI API Key', type='password')
15
+ os.environ["OPENAI_API_KEY"] = OPENAI_API_KEY
16
 
17
+ # Cargar y procesar el PDF
18
+ @st.cache_resource
19
  def create_embeddings(pdf):
20
  pdf_reader = PdfReader(pdf)
21
  text = ""
 
26
  chunk_size=800,
27
  chunk_overlap=100,
28
  length_function=len
29
+ )
30
  chunks = text_splitter.split_text(text)
31
 
32
  embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2")
 
34
 
35
  return knowledge_base
36
 
37
+ # Cargar el archivo PDF
38
+ pdf_obj = st.file_uploader("Carga tu documento", type="pdf", on_change=st.cache_resource.clear)
 
 
 
 
 
 
 
 
39
 
40
+ if pdf_obj:
41
+ try:
42
+ knowledge_base = create_embeddings(pdf_obj)
43
+ user_question = st.text_input("Haz una pregunta sobre tu PDF:")
44
+
45
+ if user_question:
46
+ docs = knowledge_base.similarity_search(user_question, 3)
47
+ llm = ChatOpenAI(model_name='gpt-3.5-turbo')
48
+ chain = load_qa_chain(llm, chain_type="stuff")
49
+ respuesta = chain.run(input_documents=docs, question=user_question)
50
+
51
+ st.write(respuesta)
52
+ except Exception as e:
53
+ st.error(f"Se produjo un error: {e}")