File size: 2,482 Bytes
c523dd3
 
 
 
 
cc9f92c
 
 
 
 
 
 
c523dd3
cc9f92c
 
 
c523dd3
cc9f92c
 
c523dd3
 
 
 
cc9f92c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c523dd3
 
 
 
 
cc9f92c
c523dd3
 
 
 
 
 
cc9f92c
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
# from ragatouille import RAGPretrainedModel
from langchain_voyageai import VoyageAIEmbeddings
# from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_experimental.text_splitter import SemanticChunker
from langchain_community.vectorstores import FAISS
from langchain_groq import ChatGroq
from langchain.chains import RetrievalQA
from langchain.memory import ConversationBufferMemory
from langchain.prompts import PromptTemplate
from dotenv import load_dotenv
import os
import streamlit as st
# import asyncio

load_dotenv()
GROQ_API_KEY = os.getenv('GROQ_API_KEY')
VOYAGE_EMBEDDINGS = os.getenv('VOYAGE_EMBEDDINGS')

llm = ChatGroq(temperature=0, groq_api_key=GROQ_API_KEY, model_name="llama3-70b-8192")
# RAG = RAGPretrainedModel.from_pretrained("colbert-ir/colbertv2.0")
embeddings = VoyageAIEmbeddings(
    voyage_api_key=VOYAGE_EMBEDDINGS, model="voyage-large-2-instruct"
)
system_prompt = """You are a helpful assistant, you will use the provided context to answer user questions.
Read the given context before answering questions and think step by step. If you can not answer a user question based on 
the provided context, inform the user. Do not use any other information for answering user. Provide a detailed answer to the question."""
prompt_template = (
                system_prompt
                + """
    
            Context: {history} \n {context}
            User: {question}
            Answer:"""
            )
prompt = PromptTemplate(input_variables=["history", "context", "question"], template=prompt_template)
memory = ConversationBufferMemory(input_key="question", memory_key="history")


def rag(full_string):
   
    # RAG.index(
    #     collection=[full_string],
    #     index_name="vector_db",
    #     max_document_length=512,
    #     split_documents=True,
        
    # )
    text_splitter = SemanticChunker(embeddings, breakpoint_threshold_type="percentile")
    texts = text_splitter.create_documents([full_string])
    db = FAISS.from_documents(texts, embeddings)
    retriever = db.as_retriever(search_kwargs={"k": 5})
    # retriever = RAG.as_langchain_retriever(k=5)
    qa = RetrievalQA.from_chain_type(
            llm=llm,
            chain_type="stuff",  # try other chains types as well. refine, map_reduce, map_rerank
            retriever=retriever,
            return_source_documents=True,  # verbose=True,
            chain_type_kwargs={"prompt": prompt, "memory": memory},
        )
    return qa