File size: 16,457 Bytes
cc9f92c a94b853 cc9f92c a94b853 cc9f92c 490caa1 cc9f92c c523dd3 cc9f92c 7d46d3d cc9f92c 7d46d3d cc9f92c 52e1ed7 a94b853 cc9f92c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 |
import streamlit as st
import pandas as pd
from PIL import Image
import os, json
from dotenv import load_dotenv
from pdf2image import convert_from_path, convert_from_bytes
import tempfile
# from langchain_groq import ChatGroq
from groq import Groq
# from langchain.agents.agent_types import AgentType
# from langchain_experimental.agents.agent_toolkits import create_csv_agent
# import streamlit.components.v1 as components
# from pymongo import MongoClient
# from bson.objectid import ObjectId
# from datetime import datetime
# from pymongo.server_api import ServerApi
from donut_inference import *
from classification import *
from non_form_llama_parse import *
from RAG import *
import json
import time
# import nest_asyncio
load_dotenv()
GROQ_API_KEY = os.getenv('GROQ_API_KEY')
# print(GROQ_API_KEY)
# llm = ChatGroq(temperature=0, groq_api_key=GROQ_API_KEY, model_name="mixtral-8x7b-32768")
client = Groq(api_key=GROQ_API_KEY)
USER_AVATAR = "π€"
BOT_AVATAR = "π€"
# import asyncio
#st.set_page_config(layout="wide")
if "current_page" not in st.session_state:
st.session_state["current_page"] = "upload"
if "messages" not in st.session_state:
st.session_state.messages = [{"role": "assistant", "content": "Hi, How can I help you today?"}]
if "conversation_state" not in st.session_state:
st.session_state["conversation_state"] = [{"role": "assistant", "content": "Hi, How can I help you today?"}]
if "json_data" not in st.session_state:
st.session_state.json_data = None
if "rag" not in st.session_state:
st.session_state.rag = None
def display_json_in_column(json_data, col):
# Create a container in the specified column
with col:
form_header = f"Classified as - {json_data.get('classified_Form', 'N/A')}"
file_header = f"File Name - {json_data.get('file', 'N/A')}"
# Begin constructing the HTML content with dynamic headers
html_content = f"""
<style>
.json-container {{
width: 500px;
height: 500px;
overflow-y: auto;
margin: 0 auto;
background-color: white;
color: black;
border: 1px solid #ccc;
border-radius: 15px;
padding: 10px;
margin-bottom: 40px;
}}
.json-container h3, .json-container h2 {{
color: black;
}}
</style>
<div class='json-container'>
<h2>{form_header}</h2>
<h3>{file_header}</h3>
"""
# Check if 'items' key exists, otherwise use the root dictionary
data_to_display = json_data.get('items', json_data)
if isinstance(data_to_display, dict):
# Handle as a dictionary: iterate and display key-value pairs
html_content += "".join([
f"<p><strong>{key}:</strong> {(', '.join(value) if isinstance(value, list) else value)}</p>"
for key, value in data_to_display.items() if key != 'classified_Form' and key != 'file'
])
elif isinstance(data_to_display, str):
# Handle as a string: convert newlines to <br> tags to maintain formatting
formatted_text = data_to_display.replace("\n", "<br>")
html_content += f"<p>{formatted_text}</p>"
else:
# Handle other types or when data_to_display is still the entire json_data
html_content += "".join([
f"<p><strong>{key}:</strong> {(', '.join(value) if isinstance(value, list) else value)}</p>"
for key, value in (data_to_display.items() if isinstance(data_to_display, dict) else json_data.items()) if key != 'classified_Form' and key != 'file'
])
# Close the HTML div tag
html_content += "</div>"
# Render the HTML content in the specified column
st.markdown(html_content, unsafe_allow_html=True)
def csv_chat_interface(data):
if st.button("Back to Upload"):
st.session_state["current_page"] = "upload"
st.session_state.clear()
st.rerun()
st.title("DocQA")
for message in st.session_state.messages:
image = USER_AVATAR if message["role"] == "user" else BOT_AVATAR
with st.chat_message(message["role"], avatar=image):
st.markdown(message["content"])
system_prompt = f'''You are a helpful assistant, you will use the provided context to answer user questions. You are great at reding json data.
Read the given context before answering questions and think step by step. If you can not answer a user question based on
the provided context, inform the user. Do not use any other information for answering user. Provide a detailed answer to the question.\n
Context:\n
{data}
'''
print("System Prompt: ", system_prompt)
if prompt := st.chat_input("User input"):
st.chat_message("user", avatar=USER_AVATAR).markdown(prompt)
st.session_state.messages.append({"role": "user", "content": prompt})
conversation_context = st.session_state["conversation_state"]
conversation_context.append({"role": "user", "content": prompt})
context = []
# Add system prompt to context if desired
context.append({"role": "system", "content": system_prompt})
# Add conversation context to context
context.extend(st.session_state["conversation_state"])
# Use the extracted data directly instead of performing inference again
# print(context)
response = client.chat.completions.create(
messages=context, # Pass conversation context directly
model="llama3-70b-8192",
temperature=0,
top_p=1,
stop=None,
stream=True,
)
with st.chat_message("assistant", avatar=BOT_AVATAR):
result = ""
res_box = st.empty()
for chunk in response:
if chunk.choices[0].delta.content:
new_content = chunk.choices[0].delta.content
result += new_content # Add a space to separate words
res_box.markdown(f'{result}')
assistant_response = result
st.session_state.messages.append({"role": "assistant", "content": assistant_response})
conversation_context.append({"role": "assistant", "content": assistant_response})
# update_conversation_in_db(prompt,assistant_response)
def rag_chat_interface(rag):
if st.button("Back to Upload"):
st.session_state["current_page"] = "upload"
st.session_state.clear()
st.rerun()
st.title("DocQA")
for message in st.session_state.messages:
image = USER_AVATAR if message["role"] == "user" else BOT_AVATAR
with st.chat_message(message["role"], avatar=image):
st.markdown(message["content"])
if prompt := st.chat_input("User input"):
st.chat_message("user", avatar=USER_AVATAR).markdown(prompt)
st.session_state.messages.append({"role": "user", "content": prompt})
res = rag(prompt)
answer, docs = res["result"], res["source_documents"]
with st.chat_message("assistant", avatar=BOT_AVATAR):
st.markdown(str(answer))
st.session_state.messages.append({"role": "assistant", "content": str(answer)})
# update_conversation_in_db(prompt, str(answer))
def upload():
st.title('DocQA')
st.subheader("These are types of forms used to fine-tune DONUT model")
# Define the paths to your images
image_paths = [
"images/cropped_1099-Div.jpg",
"images/cropped_1099-Int.jpg",
"images/cropped_w2.jpg",
"images/cropped_w3.jpg"
]
# Define the captions for your images
captions = ["1099-Div", "1099-Int", "W2", "W3"]
# Display the images side-by-side with captions
cols = st.columns(len(image_paths))
for col, image_path, caption in zip(cols, image_paths, captions):
col.image(image_path, caption=caption)
st.markdown('''
# Instructions:
1. **Ensure all uploads are in PDF format**. This ensures compatibility and uniform processing across documents.
2. **Submit forms in portrait orientation only**. Landscape formats are not supported and may result in processing errors.
3. **Forms must have a minimum resolution of 1864x1440**. This is crucial for the clarity and legibility necessary for accurate parsing.
4. **Multiple documents can be uploaded simultaneously**; however, the combined size of these documents should not exceed 10MB.
5. **Donut model parses specific forms**: 1099-Div, 1099-Int, W2, and W3. Non-form documents are also processable.
6. **Upload only Forms at a time or Non forms at a time**: we dont accept both forms and Non forms simultaneoulsy.
''')
st.subheader("Try it out")
if 'uploaded_files' not in st.session_state:
st.session_state['uploaded_files'] = []
st.session_state['uploaded_files'] = st.file_uploader("Choose PDF files", type="pdf", accept_multiple_files=True)
print(len(st.session_state['uploaded_files']))
# print(type(uploaded_files))
full_string = []
all_data = []
class_data = {}
if 'inference_data' not in st.session_state \
and 'non_form_inference_data' not in st.session_state \
and 'processed' not in st.session_state \
and 'non_form_inference_performed' not in st.session_state:
# st.session_state["inference_performed"] = False
st.session_state['inference_data'] = []
st.session_state['non_form_inference_performed'] = False
st.session_state['non_form_inference_data'] = []
st.session_state['processed'] = False
if st.session_state['uploaded_files'] and st.button('Start Processing'):
if not st.session_state['processed']:
st.session_state['processed'] = True
with st.status("Looking for Files...", expanded=True) as status:
st.write(f"Inferencing Classification Model..")
for uploaded_file in st.session_state['uploaded_files']:
if uploaded_file is not None:
with tempfile.NamedTemporaryFile(delete=False, suffix='.pdf') as temp_file:
temp_file.write(uploaded_file.getvalue())
temp_file.flush()
pages = convert_from_path(temp_file.name, 300)
img_classification = pages[0].resize((1024, 1024), Image.LANCZOS)
st.success(f"classifying the File {uploaded_file.name}...", icon="β
")
pred = predict(img_classification)
class_data[uploaded_file.name] = pred
if ('Non_Form' in class_data.values()) and ('1099_Int' in class_data.values() or \
'1099_Div' in class_data.values() or \
'w_2' in class_data.values() or \
'w_3' in class_data.values() ):
st.error('You can only upload only Forms type at a time or Non forms at time', icon="π¨")
time.sleep(5)
st.session_state.clear()
st.rerun()
for uploaded_file in st.session_state['uploaded_files']:
if uploaded_file is not None:
st.write(f"Processing file {uploaded_file.name}...")
with tempfile.NamedTemporaryFile(delete=False, suffix='.pdf') as temp_file:
temp_file.write(uploaded_file.getvalue())
temp_file.flush()
pages = convert_from_path(temp_file.name, 300)
img = pages[0].resize((1864, 1440), Image.LANCZOS)
if pred != "Non_Form":
# Check if inference has already been performed for this file
# if not st.session_state["inference_performed"]:
st.success("Infernecing the Donut Model...", icon='β
')
data_dict = inference(img)
data_dict['file'] = uploaded_file.name
data_dict['classified_Form'] = class_data[uploaded_file.name]
all_data.append(data_dict)
# st.session_state["inference_performed"] = True # Set the flag to True to indicate inference has been performed
st.session_state['inference_data'] = all_data
else:
# if not st.session_state['non_form_inference_performed']:
st.success("Starting the LLama_parse...", icon='β
')
text = extract_text(temp_file.name)
string_dict = {}
string_dict['items'] = text
string_dict['file'] = uploaded_file.name
string_dict['classified_Form'] = class_data[uploaded_file.name]
full_string.append(string_dict)
# st.session_state['non_form_inference_performed'] = True
st.session_state['non_form_inference_data'] = full_string
status.update(label="Parsing complete!", state="complete", expanded=False)
result_list = st.session_state['inference_data'] + st.session_state['non_form_inference_data']
chunks = [result_list[i:i + 3] for i in range(0, len(result_list), 3)]
# print(chunks)
# Iterate through each chunk and create a row of columns
for chunk in chunks:
columns = st.columns(3) # Always create 3 columns for consistency
for i in range(len(chunk)):
display_json_in_column(chunk[i], columns[i])
for j in range(len(chunk), 3): # Fill unused columns
with columns[j]:
st.write("")
col1, col2, col3 = st.columns([4,1,4])
if st.session_state['inference_data']:
# print(all_data)
# if len(all_data) != 0:
# all_data_string = "\n\n".join(json.dumps(data_dict) for data_dict in all_data)
# else:
all_data_string = "\n\n".join(json.dumps(data_dict) for data_dict in st.session_state['inference_data'])
st.session_state.json_data = all_data_string
with col2:
if st.button("Start Chatting"):
st.session_state["current_page"] = "csv_chat_ui"
st.rerun()
elif st.session_state['non_form_inference_data']:
# if len(full_string) != 0:
# qa = rag("\n\n".join(json.dumps(data_dict) for data_dict in full_string))
# else:
if not st.session_state['non_form_inference_performed']:
with st.spinner('Please wait for RAG-Setup to Complete...'):
qa = rag("\n\n".join(json.dumps(data_dict) for data_dict in st.session_state['non_form_inference_data']))
st.session_state['non_form_inference_performed'] = True
st.session_state.rag = qa
st.success('Done!')
# col1, col2, col3 = st.columns([4,1,4])
with col2:
if st.button("Start Chatting"):
st.session_state["current_page"] = "rag_ui"
st.rerun()
def main():
# if st.session_state["current_page"] == "login":
# showLoginPage()
if st.session_state["current_page"] == "upload":
upload()
elif st.session_state["current_page"] == "csv_chat_ui":
csv_chat_interface(st.session_state.get('json_data'))
elif st.session_state["current_page"] == "rag_ui":
rag_chat_interface(st.session_state.get('rag'))
if __name__ == '__main__':
main() |