Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) 2023-2024, Zexin He | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# https://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import torch.nn as nn | |
from .modulate import ModLN | |
class BasicBlock(nn.Module): | |
""" | |
Transformer block that is in its simplest form. | |
Designed for PF-LRM architecture. | |
""" | |
# Block contains a self-attention layer and an MLP | |
def __init__(self, inner_dim: int, num_heads: int, eps: float, | |
attn_drop: float = 0., attn_bias: bool = False, | |
mlp_ratio: float = 4., mlp_drop: float = 0.): | |
super().__init__() | |
self.norm1 = nn.LayerNorm(inner_dim, eps=eps) | |
self.self_attn = nn.MultiheadAttention( | |
embed_dim=inner_dim, num_heads=num_heads, | |
dropout=attn_drop, bias=attn_bias, batch_first=True) | |
self.norm2 = nn.LayerNorm(inner_dim, eps=eps) | |
self.mlp = nn.Sequential( | |
nn.Linear(inner_dim, int(inner_dim * mlp_ratio)), | |
nn.GELU(), | |
nn.Dropout(mlp_drop), | |
nn.Linear(int(inner_dim * mlp_ratio), inner_dim), | |
nn.Dropout(mlp_drop), | |
) | |
def forward(self, x): | |
# x: [N, L, D] | |
before_sa = self.norm1(x) | |
x = x + self.self_attn(before_sa, before_sa, before_sa, need_weights=False)[0] | |
x = x + self.mlp(self.norm2(x)) | |
return x | |
class ConditionBlock(nn.Module): | |
""" | |
Transformer block that takes in a cross-attention condition. | |
Designed for SparseLRM architecture. | |
""" | |
# Block contains a cross-attention layer, a self-attention layer, and an MLP | |
def __init__(self, inner_dim: int, cond_dim: int, num_heads: int, eps: float, | |
attn_drop: float = 0., attn_bias: bool = False, | |
mlp_ratio: float = 4., mlp_drop: float = 0.): | |
super().__init__() | |
self.norm1 = nn.LayerNorm(inner_dim, eps=eps) | |
self.cross_attn = nn.MultiheadAttention( | |
embed_dim=inner_dim, num_heads=num_heads, kdim=cond_dim, vdim=cond_dim, | |
dropout=attn_drop, bias=attn_bias, batch_first=True) | |
self.norm2 = nn.LayerNorm(inner_dim, eps=eps) | |
self.self_attn = nn.MultiheadAttention( | |
embed_dim=inner_dim, num_heads=num_heads, | |
dropout=attn_drop, bias=attn_bias, batch_first=True) | |
self.norm3 = nn.LayerNorm(inner_dim, eps=eps) | |
self.mlp = nn.Sequential( | |
nn.Linear(inner_dim, int(inner_dim * mlp_ratio)), | |
nn.GELU(), | |
nn.Dropout(mlp_drop), | |
nn.Linear(int(inner_dim * mlp_ratio), inner_dim), | |
nn.Dropout(mlp_drop), | |
) | |
def forward(self, x, cond): | |
# x: [N, L, D] | |
# cond: [N, L_cond, D_cond] | |
x = x + self.cross_attn(self.norm1(x), cond, cond, need_weights=False)[0] | |
before_sa = self.norm2(x) | |
x = x + self.self_attn(before_sa, before_sa, before_sa, need_weights=False)[0] | |
x = x + self.mlp(self.norm3(x)) | |
return x | |
class ConditionModulationBlock(nn.Module): | |
""" | |
Transformer block that takes in a cross-attention condition and another modulation vector applied to sub-blocks. | |
Designed for raw LRM architecture. | |
""" | |
# Block contains a cross-attention layer, a self-attention layer, and an MLP | |
def __init__(self, inner_dim: int, cond_dim: int, mod_dim: int, num_heads: int, eps: float, | |
attn_drop: float = 0., attn_bias: bool = False, | |
mlp_ratio: float = 4., mlp_drop: float = 0.): | |
super().__init__() | |
self.norm1 = ModLN(inner_dim, mod_dim, eps) | |
self.cross_attn = nn.MultiheadAttention( | |
embed_dim=inner_dim, num_heads=num_heads, kdim=cond_dim, vdim=cond_dim, | |
dropout=attn_drop, bias=attn_bias, batch_first=True) | |
self.norm2 = ModLN(inner_dim, mod_dim, eps) | |
self.self_attn = nn.MultiheadAttention( | |
embed_dim=inner_dim, num_heads=num_heads, | |
dropout=attn_drop, bias=attn_bias, batch_first=True) | |
self.norm3 = ModLN(inner_dim, mod_dim, eps) | |
self.mlp = nn.Sequential( | |
nn.Linear(inner_dim, int(inner_dim * mlp_ratio)), | |
nn.GELU(), | |
nn.Dropout(mlp_drop), | |
nn.Linear(int(inner_dim * mlp_ratio), inner_dim), | |
nn.Dropout(mlp_drop), | |
) | |
def forward(self, x, cond, mod): | |
# x: [N, L, D] | |
# cond: [N, L_cond, D_cond] | |
# mod: [N, D_mod] | |
x = x + self.cross_attn(self.norm1(x, mod), cond, cond, need_weights=False)[0] | |
before_sa = self.norm2(x, mod) | |
x = x + self.self_attn(before_sa, before_sa, before_sa, need_weights=False)[0] | |
x = x + self.mlp(self.norm3(x, mod)) | |
return x | |