Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
################## sh function ################## | |
C0 = 0.28209479177387814 | |
C1 = 0.4886025119029199 | |
C2 = [ | |
1.0925484305920792, | |
-1.0925484305920792, | |
0.31539156525252005, | |
-1.0925484305920792, | |
0.5462742152960396 | |
] | |
C3 = [ | |
-0.5900435899266435, | |
2.890611442640554, | |
-0.4570457994644658, | |
0.3731763325901154, | |
-0.4570457994644658, | |
1.445305721320277, | |
-0.5900435899266435 | |
] | |
C4 = [ | |
2.5033429417967046, | |
-1.7701307697799304, | |
0.9461746957575601, | |
-0.6690465435572892, | |
0.10578554691520431, | |
-0.6690465435572892, | |
0.47308734787878004, | |
-1.7701307697799304, | |
0.6258357354491761, | |
] | |
def eval_sh(deg, sh, dirs): | |
""" | |
Evaluate spherical harmonics at unit directions | |
using hardcoded SH polynomials. | |
Works with torch/np/jnp. | |
... Can be 0 or more batch dimensions. | |
:param deg: int SH max degree. Currently, 0-4 supported | |
:param sh: torch.Tensor SH coeffs (..., C, (max degree + 1) ** 2) | |
:param dirs: torch.Tensor unit directions (..., 3) | |
:return: (..., C) | |
""" | |
assert deg <= 4 and deg >= 0 | |
assert (deg + 1) ** 2 == sh.shape[-1] | |
C = sh.shape[-2] | |
result = C0 * sh[..., 0] | |
if deg > 0: | |
x, y, z = dirs[..., 0:1], dirs[..., 1:2], dirs[..., 2:3] | |
result = (result - | |
C1 * y * sh[..., 1] + | |
C1 * z * sh[..., 2] - | |
C1 * x * sh[..., 3]) | |
if deg > 1: | |
xx, yy, zz = x * x, y * y, z * z | |
xy, yz, xz = x * y, y * z, x * z | |
result = (result + | |
C2[0] * xy * sh[..., 4] + | |
C2[1] * yz * sh[..., 5] + | |
C2[2] * (2.0 * zz - xx - yy) * sh[..., 6] + | |
C2[3] * xz * sh[..., 7] + | |
C2[4] * (xx - yy) * sh[..., 8]) | |
if deg > 2: | |
result = (result + | |
C3[0] * y * (3 * xx - yy) * sh[..., 9] + | |
C3[1] * xy * z * sh[..., 10] + | |
C3[2] * y * (4 * zz - xx - yy)* sh[..., 11] + | |
C3[3] * z * (2 * zz - 3 * xx - 3 * yy) * sh[..., 12] + | |
C3[4] * x * (4 * zz - xx - yy) * sh[..., 13] + | |
C3[5] * z * (xx - yy) * sh[..., 14] + | |
C3[6] * x * (xx - 3 * yy) * sh[..., 15]) | |
if deg > 3: | |
result = (result + C4[0] * xy * (xx - yy) * sh[..., 16] + | |
C4[1] * yz * (3 * xx - yy) * sh[..., 17] + | |
C4[2] * xy * (7 * zz - 1) * sh[..., 18] + | |
C4[3] * yz * (7 * zz - 3) * sh[..., 19] + | |
C4[4] * (zz * (35 * zz - 30) + 3) * sh[..., 20] + | |
C4[5] * xz * (7 * zz - 3) * sh[..., 21] + | |
C4[6] * (xx - yy) * (7 * zz - 1) * sh[..., 22] + | |
C4[7] * xz * (xx - 3 * yy) * sh[..., 23] + | |
C4[8] * (xx * (xx - 3 * yy) - yy * (3 * xx - yy)) * sh[..., 24]) | |
return result | |
def eval_sh_bases(deg, dirs): | |
""" | |
Evaluate spherical harmonics bases at unit directions, | |
without taking linear combination. | |
At each point, the final result may the be | |
obtained through simple multiplication. | |
:param deg: int SH max degree. Currently, 0-4 supported | |
:param dirs: torch.Tensor (..., 3) unit directions | |
:return: torch.Tensor (..., (deg+1) ** 2) | |
""" | |
assert deg <= 4 and deg >= 0 | |
result = torch.empty((*dirs.shape[:-1], (deg + 1) ** 2), dtype=dirs.dtype, device=dirs.device) | |
result[..., 0] = C0 | |
if deg > 0: | |
x, y, z = dirs.unbind(-1) | |
result[..., 1] = -C1 * y; | |
result[..., 2] = C1 * z; | |
result[..., 3] = -C1 * x; | |
if deg > 1: | |
xx, yy, zz = x * x, y * y, z * z | |
xy, yz, xz = x * y, y * z, x * z | |
result[..., 4] = C2[0] * xy; | |
result[..., 5] = C2[1] * yz; | |
result[..., 6] = C2[2] * (2.0 * zz - xx - yy); | |
result[..., 7] = C2[3] * xz; | |
result[..., 8] = C2[4] * (xx - yy); | |
if deg > 2: | |
result[..., 9] = C3[0] * y * (3 * xx - yy); | |
result[..., 10] = C3[1] * xy * z; | |
result[..., 11] = C3[2] * y * (4 * zz - xx - yy); | |
result[..., 12] = C3[3] * z * (2 * zz - 3 * xx - 3 * yy); | |
result[..., 13] = C3[4] * x * (4 * zz - xx - yy); | |
result[..., 14] = C3[5] * z * (xx - yy); | |
result[..., 15] = C3[6] * x * (xx - 3 * yy); | |
if deg > 3: | |
result[..., 16] = C4[0] * xy * (xx - yy); | |
result[..., 17] = C4[1] * yz * (3 * xx - yy); | |
result[..., 18] = C4[2] * xy * (7 * zz - 1); | |
result[..., 19] = C4[3] * yz * (7 * zz - 3); | |
result[..., 20] = C4[4] * (zz * (35 * zz - 30) + 3); | |
result[..., 21] = C4[5] * xz * (7 * zz - 3); | |
result[..., 22] = C4[6] * (xx - yy) * (7 * zz - 1); | |
result[..., 23] = C4[7] * xz * (xx - 3 * yy); | |
result[..., 24] = C4[8] * (xx * (xx - 3 * yy) - yy * (3 * xx - yy)); | |
return result | |