import torch ################## sh function ################## C0 = 0.28209479177387814 C1 = 0.4886025119029199 C2 = [ 1.0925484305920792, -1.0925484305920792, 0.31539156525252005, -1.0925484305920792, 0.5462742152960396 ] C3 = [ -0.5900435899266435, 2.890611442640554, -0.4570457994644658, 0.3731763325901154, -0.4570457994644658, 1.445305721320277, -0.5900435899266435 ] C4 = [ 2.5033429417967046, -1.7701307697799304, 0.9461746957575601, -0.6690465435572892, 0.10578554691520431, -0.6690465435572892, 0.47308734787878004, -1.7701307697799304, 0.6258357354491761, ] def eval_sh(deg, sh, dirs): """ Evaluate spherical harmonics at unit directions using hardcoded SH polynomials. Works with torch/np/jnp. ... Can be 0 or more batch dimensions. :param deg: int SH max degree. Currently, 0-4 supported :param sh: torch.Tensor SH coeffs (..., C, (max degree + 1) ** 2) :param dirs: torch.Tensor unit directions (..., 3) :return: (..., C) """ assert deg <= 4 and deg >= 0 assert (deg + 1) ** 2 == sh.shape[-1] C = sh.shape[-2] result = C0 * sh[..., 0] if deg > 0: x, y, z = dirs[..., 0:1], dirs[..., 1:2], dirs[..., 2:3] result = (result - C1 * y * sh[..., 1] + C1 * z * sh[..., 2] - C1 * x * sh[..., 3]) if deg > 1: xx, yy, zz = x * x, y * y, z * z xy, yz, xz = x * y, y * z, x * z result = (result + C2[0] * xy * sh[..., 4] + C2[1] * yz * sh[..., 5] + C2[2] * (2.0 * zz - xx - yy) * sh[..., 6] + C2[3] * xz * sh[..., 7] + C2[4] * (xx - yy) * sh[..., 8]) if deg > 2: result = (result + C3[0] * y * (3 * xx - yy) * sh[..., 9] + C3[1] * xy * z * sh[..., 10] + C3[2] * y * (4 * zz - xx - yy)* sh[..., 11] + C3[3] * z * (2 * zz - 3 * xx - 3 * yy) * sh[..., 12] + C3[4] * x * (4 * zz - xx - yy) * sh[..., 13] + C3[5] * z * (xx - yy) * sh[..., 14] + C3[6] * x * (xx - 3 * yy) * sh[..., 15]) if deg > 3: result = (result + C4[0] * xy * (xx - yy) * sh[..., 16] + C4[1] * yz * (3 * xx - yy) * sh[..., 17] + C4[2] * xy * (7 * zz - 1) * sh[..., 18] + C4[3] * yz * (7 * zz - 3) * sh[..., 19] + C4[4] * (zz * (35 * zz - 30) + 3) * sh[..., 20] + C4[5] * xz * (7 * zz - 3) * sh[..., 21] + C4[6] * (xx - yy) * (7 * zz - 1) * sh[..., 22] + C4[7] * xz * (xx - 3 * yy) * sh[..., 23] + C4[8] * (xx * (xx - 3 * yy) - yy * (3 * xx - yy)) * sh[..., 24]) return result def eval_sh_bases(deg, dirs): """ Evaluate spherical harmonics bases at unit directions, without taking linear combination. At each point, the final result may the be obtained through simple multiplication. :param deg: int SH max degree. Currently, 0-4 supported :param dirs: torch.Tensor (..., 3) unit directions :return: torch.Tensor (..., (deg+1) ** 2) """ assert deg <= 4 and deg >= 0 result = torch.empty((*dirs.shape[:-1], (deg + 1) ** 2), dtype=dirs.dtype, device=dirs.device) result[..., 0] = C0 if deg > 0: x, y, z = dirs.unbind(-1) result[..., 1] = -C1 * y; result[..., 2] = C1 * z; result[..., 3] = -C1 * x; if deg > 1: xx, yy, zz = x * x, y * y, z * z xy, yz, xz = x * y, y * z, x * z result[..., 4] = C2[0] * xy; result[..., 5] = C2[1] * yz; result[..., 6] = C2[2] * (2.0 * zz - xx - yy); result[..., 7] = C2[3] * xz; result[..., 8] = C2[4] * (xx - yy); if deg > 2: result[..., 9] = C3[0] * y * (3 * xx - yy); result[..., 10] = C3[1] * xy * z; result[..., 11] = C3[2] * y * (4 * zz - xx - yy); result[..., 12] = C3[3] * z * (2 * zz - 3 * xx - 3 * yy); result[..., 13] = C3[4] * x * (4 * zz - xx - yy); result[..., 14] = C3[5] * z * (xx - yy); result[..., 15] = C3[6] * x * (xx - 3 * yy); if deg > 3: result[..., 16] = C4[0] * xy * (xx - yy); result[..., 17] = C4[1] * yz * (3 * xx - yy); result[..., 18] = C4[2] * xy * (7 * zz - 1); result[..., 19] = C4[3] * yz * (7 * zz - 3); result[..., 20] = C4[4] * (zz * (35 * zz - 30) + 3); result[..., 21] = C4[5] * xz * (7 * zz - 3); result[..., 22] = C4[6] * (xx - yy) * (7 * zz - 1); result[..., 23] = C4[7] * xz * (xx - 3 * yy); result[..., 24] = C4[8] * (xx * (xx - 3 * yy) - yy * (3 * xx - yy)); return result