Spaces:
Sleeping
Sleeping
Create main.py
Browse files
main.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio
|
2 |
+
import numpy
|
3 |
+
import pandas
|
4 |
+
import sentence_transformers
|
5 |
+
import datasets
|
6 |
+
import faiss
|
7 |
+
|
8 |
+
model = sentence_transformers.SentenceTransformer('allenai-specter')
|
9 |
+
|
10 |
+
data = datasets.load_dataset("ccm/publications")['train'].to_pandas()
|
11 |
+
|
12 |
+
dimensionality = len(data['embedding'][0])
|
13 |
+
index = faiss.IndexFlatL2(dimensionality)
|
14 |
+
|
15 |
+
vectors = numpy.stack(data['embedding'].to_list(), axis=0)
|
16 |
+
|
17 |
+
index.add(vectors)
|
18 |
+
|
19 |
+
def search(query):
|
20 |
+
k=5
|
21 |
+
query = numpy.expand_dims(model.encode(query), axis=0)
|
22 |
+
_, I = top_five = index.search(query, k)
|
23 |
+
top_five = data.loc[I[0]]
|
24 |
+
search_results = ""
|
25 |
+
|
26 |
+
for i in range(k):
|
27 |
+
search_results += str(i+1) + ". "
|
28 |
+
search_results += '"' + top_five["bibtex"].values[i]["title"] + '" '
|
29 |
+
search_results += top_five["bibtex"].values[i]["citation"]
|
30 |
+
if top_five["pub_url"].values[i] is not None:
|
31 |
+
search_results += " [Full Paper](" + top_five["pub_url"].values[i] + ")"
|
32 |
+
search_results += "\n"
|
33 |
+
return search_results
|
34 |
+
|
35 |
+
with gradio.Blocks() as demo:
|
36 |
+
query = gradio.Textbox(placeholder="Enter search terms...")
|
37 |
+
btn = gradio.Button("Search")
|
38 |
+
results = gradio.Markdown()
|
39 |
+
btn.click(fn=search, inputs=[query], outputs=results)
|
40 |
+
|
41 |
+
demo.launch(debug=True)
|