File size: 14,705 Bytes
e775f6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
from torch.utils.data import Dataset
import pickle
from src.cocktails.utilities.ingredients_utilities import extract_ingredients, ingredient_list, ingredient_profiles,  ingredients_per_type
from src.cocktails.utilities.other_scrubbing_utilities import print_recipe
import numpy as np

def get_representation_from_ingredient(ingredients, quantities, max_q_per_ing, index, params):
    assert len(ingredients) == len(quantities)
    ing, q = ingredients[index], quantities[index]
    proportion = q / np.sum(quantities)
    index_ing = ingredient_list.index(ing)
    # add keys of profile
    rep_ingredient = []
    rep_ingredient += [ingredient_profiles[k][index_ing] for k in params['ing_keys']]
    # add category encoding
    # rep_ingredient += list(params['category_encodings'][ingredient_profiles['type'][index_ing]])
    # add quantitiy and relative quantity
    rep_ingredient += [q / max_q_per_ing[ing], proportion]
    ing_one_hot = np.zeros(len(ingredient_list))
    ing_one_hot[index_ing] = 1
    rep_ingredient += list(ing_one_hot)
    indexes_to_normalize = list(range(len(params['ing_keys'])))
    #TODO: should we add ing one hot? Or make sure no 2 ing have same embedding
    return np.array(rep_ingredient), indexes_to_normalize

def get_max_n_ingredients(data):
    max_count = 0
    ingredient_set = set()
    alcohol_set = set()
    liqueur_set = set()
    ing_str = np.array(data['ingredients_str'])
    for i in range(len(data['names'])):
        ingredients, quantities = extract_ingredients(ing_str[i])
        max_count = max(max_count, len(ingredients))
        for ing in ingredients:
            ingredient_set.add(ing)
            if ing in ingredients_per_type['liquor']:
                alcohol_set.add(ing)
            if ing in ingredients_per_type['liqueur']:
                liqueur_set.add(ing)
    return max_count, ingredient_set, alcohol_set, liqueur_set

# Add your custom dataset class here
class MyDataset(Dataset):
    def __init__(self, split, params):
        data = params['raw_data']
        self.dim_rep_ingredient = params['dim_rep_ingredient']
        n_data = len(data["names"])

        preparation_list = sorted(set(data['category']))
        categories_list = sorted(set(data['subcategory']))
        glasses_list = sorted(set(data['glass']))

        max_ingredients, ingredient_set, liquor_set, liqueur_set = get_max_n_ingredients(data)
        ingredient_set = sorted(ingredient_set)
        self.ingredient_set = ingredient_set

        ingredient_quantities = []  # output of our network
        ingr_strs = np.array(data['ingredients_str'])
        for i in range(n_data):
            ingredients, quantities = extract_ingredients(ingr_strs[i])
            # get ingredient presence and quantity
            ingredient_q_rep = np.zeros([len(ingredient_set)])
            for ing, q in zip(ingredients, quantities):
                ingredient_q_rep[ingredient_set.index(ing)] = q
            ingredient_quantities.append(ingredient_q_rep)

        # take care of ingredient quantities (OUTPUTS)
        ingredient_quantities = np.array(ingredient_quantities)
        ingredients_presence = (ingredient_quantities>0).astype(np.int)

        min_ing_quantities = np.min(ingredient_quantities, axis=0)
        max_ing_quantities = np.max(ingredient_quantities, axis=0)
        def normalize_ing_quantities(ing_quantities):
            return ((ing_quantities - min_ing_quantities) / (max_ing_quantities - min_ing_quantities)).copy()

        def denormalize_ing_quantities(normalized_ing_quantities):
            return (normalized_ing_quantities * (max_ing_quantities - min_ing_quantities) + min_ing_quantities).copy()
        ing_q_when_present = ingredient_quantities.copy()
        for i in range(len(ing_q_when_present)):
            ing_q_when_present[i, np.where(ing_q_when_present[i, :] == 0)] = np.nan
        self.min_when_present_ing_quantities = np.nanmin(ing_q_when_present, axis=0)


        def filter_decoder_output(output):
            output_unnormalized = output * max_ing_quantities
            if output.ndim == 1:
                output_unnormalized[np.where(output_unnormalized<self.min_when_present_ing_quantities)] = 0
            else:
                for i in range(output.shape[0]):
                    output_unnormalized[i, np.where(output_unnormalized[i] < self.min_when_present_ing_quantities)] = 0
            return output_unnormalized.copy()
        self.filter_decoder_output = filter_decoder_output
        # arg_mins = np.nanargmin(ing_q_when_present, axis=0)
        #
        # for ing, minq, argminq in zip(ingredient_set, self.min_when_present_ing_quantities, arg_mins):
        #     print(f'__\n{ing}: {minq}')
        #     print_recipe(ingr_strs[argminq])
        #     ingredients, quantities = extract_ingredients(ingr_strs[argminq])
        #     # get ingredient presence and quantity
        #     ingredient_q_rep = np.zeros([len(ingredient_set)])
        #     for ing, q in zip(ingredients, quantities):
        #         ingredient_q_rep[ingredient_set.index(ing)] = q
        #     print(np.array(data['urls'])[argminq])
        #     stop = 1

        self.max_ing_quantities = max_ing_quantities
        self.mean_ing_quantities = np.mean(ingredient_quantities, axis=0)
        self.std_ing_quantities = np.std(ingredient_quantities, axis=0)
        if split == 'train':
            np.savetxt(params['save_path'] + 'min_when_present_ing_quantities.txt', self.min_when_present_ing_quantities)
            np.savetxt(params['save_path'] + 'max_ing_quantities.txt', max_ing_quantities)
            np.savetxt(params['save_path'] + 'mean_ing_quantities.txt', self.mean_ing_quantities)
            np.savetxt(params['save_path'] + 'std_ing_quantities.txt', self.std_ing_quantities)

        # print(ingredient_quantities[0])
        # ingredient_quantities = (ingredient_quantities - self.mean_ing_quantities) /  self.std_ing_quantities
        # print(ingredient_quantities[0])
        # print(ingredient_quantities[0] * self.std_ing_quantities + self.mean_ing_quantities )
        ingredient_quantities = ingredient_quantities / max_ing_quantities#= normalize_ing_quantities(ingredient_quantities)




        max_q_per_ing = dict(zip(ingredient_set, max_ing_quantities))
        # print(ingredient_quantities[0])
        #########
        # Process input representation_analysis: list of ingredient representation_analysis
        #########
        input_data = []  # input of ingredient encoders
        all_ing_reps = []
        for i in range(n_data):
            ingredients, quantities = extract_ingredients(ingr_strs[i])
            # get ingredient presence and quantity
            ingredient_q_rep = np.zeros([len(ingredient_set)])
            for ing, q in zip(ingredients, quantities):
                ingredient_q_rep[ingredient_set.index(ing)] = q
            # get main liquor
            cocktail_rep = []
            for j in range(len(ingredients)):
                cocktail_rep.append(get_representation_from_ingredient(ingredients, quantities, max_q_per_ing, index=j, params=params)[0])
                all_ing_reps.append(cocktail_rep[-1].copy())
            input_data.append(cocktail_rep)


        all_ing_reps = np.array(all_ing_reps)
        min_ing_reps = np.min(all_ing_reps[:, params['indexes_ing_to_normalize']], axis=0)
        max_ing_reps = np.max(all_ing_reps[:, params['indexes_ing_to_normalize']], axis=0)

        def normalize_ing_reps(ing_reps):
            if ing_reps.ndim == 1:
                ing_reps = ing_reps.reshape(1, -1)
            out = ing_reps.copy()
            out[:, params['indexes_ing_to_normalize']] = (out[:, params['indexes_ing_to_normalize']] - min_ing_reps) / (max_ing_reps - min_ing_reps)
            return out

        def denormalize_ing_reps(normalized_ing_reps):
            if normalized_ing_reps.ndim == 1:
                normalized_ing_reps = normalized_ing_reps.reshape(1, -1)
            out = normalized_ing_reps.copy()
            out[:, params['indexes_ing_to_normalize']] = out[:, params['indexes_ing_to_normalize']] * (max_ing_reps - min_ing_reps) + min_ing_reps
            return out


        # put everything in a big matrix
        dim_cocktail_rep = max_ingredients * self.dim_rep_ingredient
        input_data2 = []
        nb_ingredients = []
        for d in input_data:
            cocktail_rep = np.zeros([dim_cocktail_rep])
            cocktail_rep.fill(np.nan)
            index = 0
            nb_ingredients.append(len(d))
            for dj in d:
                cocktail_rep[index:index + self.dim_rep_ingredient] = normalize_ing_reps(dj)
                index += self.dim_rep_ingredient
            input_data2.append(cocktail_rep)
        input_data = np.array(input_data2)
        nb_ingredients = np.array(nb_ingredients)





        # let us now extract various possible output we might want to predict:
        #########
        # Process output cocktail representation_analysis (computed from ingredient reps)
        #########
        # quantities_indexes = np.arange(20, 456, 57)
        # qs = input_data[0, quantities_indexes]
        # ingredient_quantities[0]
        # get final volume
        volumes = np.array(params['raw_data']['end volume'])

        min_vol = volumes.min()
        max_vol = volumes.max()
        def normalize_vol(volume):
            return (volume - min_vol) / (max_vol - min_vol)

        def denormalize_vol(normalized_vol):
            return normalized_vol * (max_vol - min_vol) + min_vol

        volumes = normalize_vol(volumes)


        # computed cocktail representation
        computed_cocktail_reps = params['cocktail_reps']
        self.dim_rep = computed_cocktail_reps.shape[1]

        #########
        # Process output sub categories
        #########
        categories = np.array([categories_list.index(sc) for sc in data['subcategory']])
        counts = dict(zip(categories_list, [0] * len(categories)))
        for c in data['subcategory']:
            counts[c] += 1
        for k in counts.keys():
            counts[k] /= len(data['subcategory'])
        self.categories = categories_list
        self.categories_weights = []
        for c in self.categories:
            self.categories_weights.append(1/len(self.categories)/counts[c])
        print(counts)

        #########
        # Process output glass type
        #########
        glasses = np.array([glasses_list.index(sc) for sc in data['glass']])
        counts = dict(zip(glasses_list, [0] * len(set(data['glass']))))
        for c in data['glass']:
            counts[c] += 1
        for k in counts.keys():
            counts[k] /= len(data['glass'])
        self.glasses = glasses_list
        self.glasses_weights = []
        for c in self.glasses:
            self.glasses_weights.append(1 / len(self.glasses) / counts[c])
        print(counts)

        #########
        # Process output preparation type
        #########
        prep_type = np.array([preparation_list.index(sc) for sc in data['category']])
        counts = dict(zip(preparation_list, [0] * len(preparation_list)))
        for c in data['category']:
            counts[c] += 1
        for k in counts.keys():
            counts[k] /= len(data['category'])
        self.prep_types = preparation_list
        self.prep_types_weights = []
        for c in self.prep_types:
            self.prep_types_weights.append(1 / len(self.prep_types) / counts[c])
        print(counts)

        taste_reps = list(data['taste_rep'])
        taste_rep_ground_truth = []
        taste_rep_valid = []
        for tr in taste_reps:
            if len(tr) > 2:
                taste_rep_valid.append(True)
                taste_rep_ground_truth.append([float(tr.split('[')[1].split(',')[0]), float(tr.split(']')[0].split(',')[1][1:])])
            else:
                taste_rep_valid.append(False)
                taste_rep_ground_truth.append([np.nan, np.nan])
        taste_rep_ground_truth = np.array(taste_rep_ground_truth)
        taste_rep_valid = np.array(taste_rep_valid)
        taste_rep_ground_truth /= 10

        auxiliary_data = dict(categories=categories,
                              glasses=glasses,
                              prep_type=prep_type,
                              cocktail_reps=computed_cocktail_reps,
                              ingredients_presence=ingredients_presence,
                              taste_reps=taste_rep_ground_truth,
                              volume=volumes,
                              ingredients_quantities=ingredient_quantities)
        self.auxiliary_keys = sorted(params['auxiliaries_dict'].keys())
        assert self.auxiliary_keys == sorted(auxiliary_data.keys())

        data_preprocessing = dict(min_max_ing_quantities=(min_ing_quantities, max_ing_quantities),
                                  min_max_ing_reps=(min_ing_reps, max_ing_reps),
                                  min_max_vol=(min_vol, max_vol))

        if split == 'train':
            with open(params['save_path'] + 'normalization_funcs.pickle', 'wb') as f:
                pickle.dump(data_preprocessing, f)

        n_data = len(input_data)
        assert len(ingredient_quantities) == n_data
        for aux in self.auxiliary_keys:
            assert len(auxiliary_data[aux]) == n_data

        if split == 'train':
            indexes = np.arange(int(0.9 * n_data))
        elif split == 'test':
            indexes = np.arange(int(0.9 * n_data), n_data)
        elif split == 'all':
            indexes = np.arange(n_data)
        else:
            raise ValueError

        # np.random.shuffle(indexes)
        self.taste_rep_valid = taste_rep_valid[indexes]
        self.input_ingredients = input_data[indexes]
        self.ingredient_quantities = ingredient_quantities[indexes]
        self.computed_cocktail_reps = computed_cocktail_reps[indexes]
        self.auxiliaries = dict()
        for aux in self.auxiliary_keys:
            self.auxiliaries[aux] = auxiliary_data[aux][indexes]
        self.nb_ingredients = nb_ingredients[indexes]

    def __len__(self):
        return len(self.input_ingredients)

    def get_auxiliary_data(self, idx):
        out = dict()
        for aux in self.auxiliary_keys:
            out[aux] = self.auxiliaries[aux][idx]
        return out

    def __getitem__(self, idx):
        assert self.nb_ingredients[idx] == np.argwhere(~np.isnan(self.input_ingredients[idx])).flatten().size / self.dim_rep_ingredient
        return [self.nb_ingredients[idx], self.input_ingredients[idx], self.ingredient_quantities[idx], self.computed_cocktail_reps[idx], self.get_auxiliary_data(idx),
                self.taste_rep_valid[idx]]