Spaces:
Runtime error
Runtime error
File size: 14,705 Bytes
e775f6d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 |
from torch.utils.data import Dataset
import pickle
from src.cocktails.utilities.ingredients_utilities import extract_ingredients, ingredient_list, ingredient_profiles, ingredients_per_type
from src.cocktails.utilities.other_scrubbing_utilities import print_recipe
import numpy as np
def get_representation_from_ingredient(ingredients, quantities, max_q_per_ing, index, params):
assert len(ingredients) == len(quantities)
ing, q = ingredients[index], quantities[index]
proportion = q / np.sum(quantities)
index_ing = ingredient_list.index(ing)
# add keys of profile
rep_ingredient = []
rep_ingredient += [ingredient_profiles[k][index_ing] for k in params['ing_keys']]
# add category encoding
# rep_ingredient += list(params['category_encodings'][ingredient_profiles['type'][index_ing]])
# add quantitiy and relative quantity
rep_ingredient += [q / max_q_per_ing[ing], proportion]
ing_one_hot = np.zeros(len(ingredient_list))
ing_one_hot[index_ing] = 1
rep_ingredient += list(ing_one_hot)
indexes_to_normalize = list(range(len(params['ing_keys'])))
#TODO: should we add ing one hot? Or make sure no 2 ing have same embedding
return np.array(rep_ingredient), indexes_to_normalize
def get_max_n_ingredients(data):
max_count = 0
ingredient_set = set()
alcohol_set = set()
liqueur_set = set()
ing_str = np.array(data['ingredients_str'])
for i in range(len(data['names'])):
ingredients, quantities = extract_ingredients(ing_str[i])
max_count = max(max_count, len(ingredients))
for ing in ingredients:
ingredient_set.add(ing)
if ing in ingredients_per_type['liquor']:
alcohol_set.add(ing)
if ing in ingredients_per_type['liqueur']:
liqueur_set.add(ing)
return max_count, ingredient_set, alcohol_set, liqueur_set
# Add your custom dataset class here
class MyDataset(Dataset):
def __init__(self, split, params):
data = params['raw_data']
self.dim_rep_ingredient = params['dim_rep_ingredient']
n_data = len(data["names"])
preparation_list = sorted(set(data['category']))
categories_list = sorted(set(data['subcategory']))
glasses_list = sorted(set(data['glass']))
max_ingredients, ingredient_set, liquor_set, liqueur_set = get_max_n_ingredients(data)
ingredient_set = sorted(ingredient_set)
self.ingredient_set = ingredient_set
ingredient_quantities = [] # output of our network
ingr_strs = np.array(data['ingredients_str'])
for i in range(n_data):
ingredients, quantities = extract_ingredients(ingr_strs[i])
# get ingredient presence and quantity
ingredient_q_rep = np.zeros([len(ingredient_set)])
for ing, q in zip(ingredients, quantities):
ingredient_q_rep[ingredient_set.index(ing)] = q
ingredient_quantities.append(ingredient_q_rep)
# take care of ingredient quantities (OUTPUTS)
ingredient_quantities = np.array(ingredient_quantities)
ingredients_presence = (ingredient_quantities>0).astype(np.int)
min_ing_quantities = np.min(ingredient_quantities, axis=0)
max_ing_quantities = np.max(ingredient_quantities, axis=0)
def normalize_ing_quantities(ing_quantities):
return ((ing_quantities - min_ing_quantities) / (max_ing_quantities - min_ing_quantities)).copy()
def denormalize_ing_quantities(normalized_ing_quantities):
return (normalized_ing_quantities * (max_ing_quantities - min_ing_quantities) + min_ing_quantities).copy()
ing_q_when_present = ingredient_quantities.copy()
for i in range(len(ing_q_when_present)):
ing_q_when_present[i, np.where(ing_q_when_present[i, :] == 0)] = np.nan
self.min_when_present_ing_quantities = np.nanmin(ing_q_when_present, axis=0)
def filter_decoder_output(output):
output_unnormalized = output * max_ing_quantities
if output.ndim == 1:
output_unnormalized[np.where(output_unnormalized<self.min_when_present_ing_quantities)] = 0
else:
for i in range(output.shape[0]):
output_unnormalized[i, np.where(output_unnormalized[i] < self.min_when_present_ing_quantities)] = 0
return output_unnormalized.copy()
self.filter_decoder_output = filter_decoder_output
# arg_mins = np.nanargmin(ing_q_when_present, axis=0)
#
# for ing, minq, argminq in zip(ingredient_set, self.min_when_present_ing_quantities, arg_mins):
# print(f'__\n{ing}: {minq}')
# print_recipe(ingr_strs[argminq])
# ingredients, quantities = extract_ingredients(ingr_strs[argminq])
# # get ingredient presence and quantity
# ingredient_q_rep = np.zeros([len(ingredient_set)])
# for ing, q in zip(ingredients, quantities):
# ingredient_q_rep[ingredient_set.index(ing)] = q
# print(np.array(data['urls'])[argminq])
# stop = 1
self.max_ing_quantities = max_ing_quantities
self.mean_ing_quantities = np.mean(ingredient_quantities, axis=0)
self.std_ing_quantities = np.std(ingredient_quantities, axis=0)
if split == 'train':
np.savetxt(params['save_path'] + 'min_when_present_ing_quantities.txt', self.min_when_present_ing_quantities)
np.savetxt(params['save_path'] + 'max_ing_quantities.txt', max_ing_quantities)
np.savetxt(params['save_path'] + 'mean_ing_quantities.txt', self.mean_ing_quantities)
np.savetxt(params['save_path'] + 'std_ing_quantities.txt', self.std_ing_quantities)
# print(ingredient_quantities[0])
# ingredient_quantities = (ingredient_quantities - self.mean_ing_quantities) / self.std_ing_quantities
# print(ingredient_quantities[0])
# print(ingredient_quantities[0] * self.std_ing_quantities + self.mean_ing_quantities )
ingredient_quantities = ingredient_quantities / max_ing_quantities#= normalize_ing_quantities(ingredient_quantities)
max_q_per_ing = dict(zip(ingredient_set, max_ing_quantities))
# print(ingredient_quantities[0])
#########
# Process input representation_analysis: list of ingredient representation_analysis
#########
input_data = [] # input of ingredient encoders
all_ing_reps = []
for i in range(n_data):
ingredients, quantities = extract_ingredients(ingr_strs[i])
# get ingredient presence and quantity
ingredient_q_rep = np.zeros([len(ingredient_set)])
for ing, q in zip(ingredients, quantities):
ingredient_q_rep[ingredient_set.index(ing)] = q
# get main liquor
cocktail_rep = []
for j in range(len(ingredients)):
cocktail_rep.append(get_representation_from_ingredient(ingredients, quantities, max_q_per_ing, index=j, params=params)[0])
all_ing_reps.append(cocktail_rep[-1].copy())
input_data.append(cocktail_rep)
all_ing_reps = np.array(all_ing_reps)
min_ing_reps = np.min(all_ing_reps[:, params['indexes_ing_to_normalize']], axis=0)
max_ing_reps = np.max(all_ing_reps[:, params['indexes_ing_to_normalize']], axis=0)
def normalize_ing_reps(ing_reps):
if ing_reps.ndim == 1:
ing_reps = ing_reps.reshape(1, -1)
out = ing_reps.copy()
out[:, params['indexes_ing_to_normalize']] = (out[:, params['indexes_ing_to_normalize']] - min_ing_reps) / (max_ing_reps - min_ing_reps)
return out
def denormalize_ing_reps(normalized_ing_reps):
if normalized_ing_reps.ndim == 1:
normalized_ing_reps = normalized_ing_reps.reshape(1, -1)
out = normalized_ing_reps.copy()
out[:, params['indexes_ing_to_normalize']] = out[:, params['indexes_ing_to_normalize']] * (max_ing_reps - min_ing_reps) + min_ing_reps
return out
# put everything in a big matrix
dim_cocktail_rep = max_ingredients * self.dim_rep_ingredient
input_data2 = []
nb_ingredients = []
for d in input_data:
cocktail_rep = np.zeros([dim_cocktail_rep])
cocktail_rep.fill(np.nan)
index = 0
nb_ingredients.append(len(d))
for dj in d:
cocktail_rep[index:index + self.dim_rep_ingredient] = normalize_ing_reps(dj)
index += self.dim_rep_ingredient
input_data2.append(cocktail_rep)
input_data = np.array(input_data2)
nb_ingredients = np.array(nb_ingredients)
# let us now extract various possible output we might want to predict:
#########
# Process output cocktail representation_analysis (computed from ingredient reps)
#########
# quantities_indexes = np.arange(20, 456, 57)
# qs = input_data[0, quantities_indexes]
# ingredient_quantities[0]
# get final volume
volumes = np.array(params['raw_data']['end volume'])
min_vol = volumes.min()
max_vol = volumes.max()
def normalize_vol(volume):
return (volume - min_vol) / (max_vol - min_vol)
def denormalize_vol(normalized_vol):
return normalized_vol * (max_vol - min_vol) + min_vol
volumes = normalize_vol(volumes)
# computed cocktail representation
computed_cocktail_reps = params['cocktail_reps']
self.dim_rep = computed_cocktail_reps.shape[1]
#########
# Process output sub categories
#########
categories = np.array([categories_list.index(sc) for sc in data['subcategory']])
counts = dict(zip(categories_list, [0] * len(categories)))
for c in data['subcategory']:
counts[c] += 1
for k in counts.keys():
counts[k] /= len(data['subcategory'])
self.categories = categories_list
self.categories_weights = []
for c in self.categories:
self.categories_weights.append(1/len(self.categories)/counts[c])
print(counts)
#########
# Process output glass type
#########
glasses = np.array([glasses_list.index(sc) for sc in data['glass']])
counts = dict(zip(glasses_list, [0] * len(set(data['glass']))))
for c in data['glass']:
counts[c] += 1
for k in counts.keys():
counts[k] /= len(data['glass'])
self.glasses = glasses_list
self.glasses_weights = []
for c in self.glasses:
self.glasses_weights.append(1 / len(self.glasses) / counts[c])
print(counts)
#########
# Process output preparation type
#########
prep_type = np.array([preparation_list.index(sc) for sc in data['category']])
counts = dict(zip(preparation_list, [0] * len(preparation_list)))
for c in data['category']:
counts[c] += 1
for k in counts.keys():
counts[k] /= len(data['category'])
self.prep_types = preparation_list
self.prep_types_weights = []
for c in self.prep_types:
self.prep_types_weights.append(1 / len(self.prep_types) / counts[c])
print(counts)
taste_reps = list(data['taste_rep'])
taste_rep_ground_truth = []
taste_rep_valid = []
for tr in taste_reps:
if len(tr) > 2:
taste_rep_valid.append(True)
taste_rep_ground_truth.append([float(tr.split('[')[1].split(',')[0]), float(tr.split(']')[0].split(',')[1][1:])])
else:
taste_rep_valid.append(False)
taste_rep_ground_truth.append([np.nan, np.nan])
taste_rep_ground_truth = np.array(taste_rep_ground_truth)
taste_rep_valid = np.array(taste_rep_valid)
taste_rep_ground_truth /= 10
auxiliary_data = dict(categories=categories,
glasses=glasses,
prep_type=prep_type,
cocktail_reps=computed_cocktail_reps,
ingredients_presence=ingredients_presence,
taste_reps=taste_rep_ground_truth,
volume=volumes,
ingredients_quantities=ingredient_quantities)
self.auxiliary_keys = sorted(params['auxiliaries_dict'].keys())
assert self.auxiliary_keys == sorted(auxiliary_data.keys())
data_preprocessing = dict(min_max_ing_quantities=(min_ing_quantities, max_ing_quantities),
min_max_ing_reps=(min_ing_reps, max_ing_reps),
min_max_vol=(min_vol, max_vol))
if split == 'train':
with open(params['save_path'] + 'normalization_funcs.pickle', 'wb') as f:
pickle.dump(data_preprocessing, f)
n_data = len(input_data)
assert len(ingredient_quantities) == n_data
for aux in self.auxiliary_keys:
assert len(auxiliary_data[aux]) == n_data
if split == 'train':
indexes = np.arange(int(0.9 * n_data))
elif split == 'test':
indexes = np.arange(int(0.9 * n_data), n_data)
elif split == 'all':
indexes = np.arange(n_data)
else:
raise ValueError
# np.random.shuffle(indexes)
self.taste_rep_valid = taste_rep_valid[indexes]
self.input_ingredients = input_data[indexes]
self.ingredient_quantities = ingredient_quantities[indexes]
self.computed_cocktail_reps = computed_cocktail_reps[indexes]
self.auxiliaries = dict()
for aux in self.auxiliary_keys:
self.auxiliaries[aux] = auxiliary_data[aux][indexes]
self.nb_ingredients = nb_ingredients[indexes]
def __len__(self):
return len(self.input_ingredients)
def get_auxiliary_data(self, idx):
out = dict()
for aux in self.auxiliary_keys:
out[aux] = self.auxiliaries[aux][idx]
return out
def __getitem__(self, idx):
assert self.nb_ingredients[idx] == np.argwhere(~np.isnan(self.input_ingredients[idx])).flatten().size / self.dim_rep_ingredient
return [self.nb_ingredients[idx], self.input_ingredients[idx], self.ingredient_quantities[idx], self.computed_cocktail_reps[idx], self.get_auxiliary_data(idx),
self.taste_rep_valid[idx]] |