File size: 31,086 Bytes
e775f6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
from src.cocktails.utilities.ingredients_utilities import get_ingredients_info, format_ingredients, extract_ingredients, ingredients_per_type, bubble_ingredients
import numpy as np
from src.cocktails.utilities.other_scrubbing_utilities import print_recipe
from src.cocktails.utilities.cocktail_utilities import get_cocktail_rep, get_profile, get_bunch_of_rep_keys
from src.cocktails.utilities.glass_and_volume_utilities import glass_volume
from src.cocktails.representation_learning.run import get_model
from src.cocktails.pipeline.get_cocktail2affective_cluster import get_cocktail2affective_cluster
from src.cocktails.config import COCKTAILS_CSV_DATA, FULL_COCKTAIL_REP_PATH, REPO_PATH, COCKTAIL_REP_CHKPT_PATH, RECIPE2FEATURES_PATH
from src.cocktails.representation_learning.run_without_vae import get_model
from src.cocktails.utilities.cocktail_category_detection_utilities import find_cocktail_sub_category

import pandas as pd
import torch
import time
device = 'cuda' if torch.cuda.is_available() else 'cpu'

density_ingredients = np.loadtxt(COCKTAIL_REP_CHKPT_PATH + 'density_ingredients.txt')
max_ingredients, ingredient_list, ind_alcohol = get_ingredients_info()
min_ingredients = 2
factor_max = 1.2  # generated recipes can go up to 1.2 times the max quantity of the ingredient found in the dataset

prep_model = get_model(RECIPE2FEATURES_PATH + 'multi_predictor/')[0]

all_rep_path = FULL_COCKTAIL_REP_PATH
all_reps = np.loadtxt(all_rep_path)
experiment_dir = REPO_PATH + '/experiments/cocktails/'
rep_keys = get_bunch_of_rep_keys()['custom']
dict_weights_mse_computation = {'end volume': .1, 'end sour': 2, 'end sweet': 2, 'end booze': 4, 'end bitter': 2, 'end fruit': 1, 'end herb': 1,
                                'end complex': 1, 'end spicy': 5, 'end oaky': 1, 'end fizzy': 10, 'end colorful': 1, 'end eggy': 10}
assert sorted(dict_weights_mse_computation.keys()) == sorted(rep_keys)
weights_mse_computation = np.array([dict_weights_mse_computation[k] for k in rep_keys])
weights_mse_computation /= weights_mse_computation.sum()
data = pd.read_csv(COCKTAILS_CSV_DATA)
preparation_list = sorted(set(data['category']))
glasses_list = sorted(set(data['glass']))

weights_perf_n_ing = {2:0.71, 3:0.81, 4:0.93, 5:1., 6:1.03, 7:1.08, 8:1.05}

# weights_perf_n_ing = {2:0.75, 3:0.8, 4:0.95, 5:1.05, 6:1.05, 7:1.05, 8:1.05}
min_ingredients_quantities_when_present = np.loadtxt(COCKTAIL_REP_CHKPT_PATH +'ingredients_min_quantities_when_present.txt')
min_ingredients_quantities = np.loadtxt(COCKTAIL_REP_CHKPT_PATH +'ingredients_min_quantities.txt')
max_ingredients_quantities = np.loadtxt(COCKTAIL_REP_CHKPT_PATH + 'ingredients_max_quantities.txt')
min_cocktail_rep, max_cocktail_rep = np.loadtxt(COCKTAIL_REP_CHKPT_PATH +'cocktail_minmax_dim13_customkeys.txt')
distrib_nb_ings_2_8 = np.loadtxt(COCKTAIL_REP_CHKPT_PATH + 'distrib_nb_ing.txt')[2:]
def normalize_cocktail(cocktail_rep):
    return ((cocktail_rep - min_cocktail_rep) / (max_cocktail_rep - min_cocktail_rep) - 0.5) * 2

def denormalize_cocktail(cocktail_rep):
    return (cocktail_rep / 2 + 0.5) * (max_cocktail_rep - min_cocktail_rep) + min_cocktail_rep

def normalize_ingredient_q_rep(ingredients_q):
    return (ingredients_q - min_ingredients_quantities_when_present) / (max_ingredients_quantities * factor_max - min_ingredients_quantities_when_present)

COCKTAIL_REPS = normalize_cocktail(np.array([data[k] for k in rep_keys]).transpose())
assert np.abs(COCKTAIL_REPS - all_reps).sum() < 1e-8

cocktail2affective_cluster = get_cocktail2affective_cluster()

original_affective_keys = get_bunch_of_rep_keys()['affective']
def sigmoid(x, shift, beta):
    return (1 / (1 + np.exp(-(x + shift) * beta)) - 0.5) * 2

def get_normalized_affective_cocktail_rep_from_normalized_cocktail_rep(cocktail_rep):
    indexes = np.array([rep_keys.index(key) for key in original_affective_keys])
    cocktail_rep = cocktail_rep[indexes]
    cocktail_rep[0] = sigmoid(cocktail_rep[0], shift=0.05, beta=4)
    cocktail_rep[1] = sigmoid(cocktail_rep[1], shift=0.3, beta=5)
    cocktail_rep[2] = sigmoid(cocktail_rep[2], shift=0.15, beta=3)
    cocktail_rep[3] = sigmoid(cocktail_rep[3], shift=0.9, beta=20)
    cocktail_rep[4] = sigmoid(cocktail_rep[4], shift=0, beta=4)
    cocktail_rep[5] = sigmoid(cocktail_rep[5], shift=0.2, beta=3)
    cocktail_rep[6] = sigmoid(cocktail_rep[6], shift=0.5, beta=5)
    cocktail_rep[7] = sigmoid(cocktail_rep[7], shift=0.2, beta=6)
    return cocktail_rep

class IndividualCocktail():
    def __init__(self, pop_params, target, target_affective_cluster, genes_presence=None, genes_quantity=None,
                 compute_perf=True, known_target_dict=None, run_hard_check=False):

        self.pop_params = pop_params
        self.n_genes = len(ingredient_list)
        self.max_ingredients = max_ingredients
        self.min_ingredients = min_ingredients
        self.mutation_params = pop_params['mutation_params']
        self.dist = pop_params['dist']
        self.target = target
        self.is_known = known_target_dict is not None
        self.known_target_dict = known_target_dict
        self.perf = None
        self.cocktail_rep = None
        self.affective_cluster = None
        self.target_affective_cluster = target_affective_cluster
        self.ing_list = np.array(ingredient_list)
        self.ing_set = set(ingredient_list)

        self.ing_ids_per_cat = dict(bubbles=set(self.get_ingredients_ids_from_list(bubble_ingredients)),
                                    liquor=set(self.get_ingredients_ids_from_list(ingredients_per_type['liquor'])),
                                    liqueur=set(self.get_ingredients_ids_from_list(ingredients_per_type['liqueur'])),
                                    citrus=set(self.get_ingredients_ids_from_list(ingredients_per_type['acid'] + ['orange juice'])),
                                    alcohol=set(ind_alcohol),
                                    sweeteners=set(self.get_ingredients_ids_from_list(ingredients_per_type['sweeteners'])),
                                    vermouth=set(self.get_ingredients_ids_from_list(ingredients_per_type['vermouth'])),
                                    bitters=set(self.get_ingredients_ids_from_list(ingredients_per_type['bitters'])),
                                    juice=set(self.get_ingredients_ids_from_list(ingredients_per_type['juice'])),
                                    acid=set(self.get_ingredients_ids_from_list(ingredients_per_type['acid'])),
                                    egg=set(self.get_ingredients_ids_from_list(['egg']))
                                    )

        if genes_presence is not None:
            assert len(genes_presence) == self.n_genes
            assert len(genes_quantity) == self.n_genes
            self.genes_presence = genes_presence
            self.genes_quantity = genes_quantity
            if compute_perf:
                self.compute_cocktail_rep()
                self.compute_perf()
        else:
            self.sample_initial_genes()
            self.compute_cocktail_rep()
            # self.make_recipe_fit_the_glass()
            self.compute_perf()


    # # # # # # # # # # # # # # # # # # # # # # # #
    # Sample initial genes with smart rules
    # # # # # # # # # # # # # # # # # # # # # # # #

    def sample_initial_genes(self):
        # rules:
        # - between min_ingredients and max_ingredients
        # - at most one type of bubbles
        # - at least one alcohol
        # - no egg without lime or lemon
        # - at most two liqueurs
        # - at most three liquors
        # - at most two sweetener
        self.genes_quantity = np.random.uniform(0, 1, size=self.n_genes)  # holds quantities for each ingredient
        n_ingredients = np.random.choice(np.arange(min_ingredients, max_ingredients + 1), p=distrib_nb_ings_2_8)
        self.genes_presence = np.zeros(self.n_genes)
        # add one alchohol
        self.genes_presence[np.random.choice(ind_alcohol)] = 1
        while self.get_ing_count() < n_ingredients:
            candidate_ids = self.get_candidate_ingredients_ids(self.genes_presence)
            probas = density_ingredients[candidate_ids] / np.sum(density_ingredients[candidate_ids])
            self.genes_presence[np.random.choice(candidate_ids, p=probas)] = 1

    def get_candidate_ingredients_ids(self, genes_presence):
        candidates = set(np.argwhere(genes_presence==0).flatten())
        present_ids = set(np.argwhere(genes_presence==1).flatten())

        if self.count_in_genes(present_ids, 'bubbles') >= 1:  # at most one type of bubbles
            candidates = candidates - self.ing_ids_per_cat['bubbles']
        if self.count_in_genes(present_ids, 'liquor')  >= 3:  # at most three liquors
            candidates = candidates - self.ing_ids_per_cat['liquor']
        if self.count_in_genes(present_ids, 'liqueur')  >= 2:  # at most two liqueurs
            candidates = candidates - self.ing_ids_per_cat['liqueur']
        if self.count_in_genes(present_ids, 'sweeteners')  >= 2:  # at most two sweetener
            candidates = candidates - self.ing_ids_per_cat['sweeteners']
        if self.count_in_genes(present_ids, 'citrus')  == 0:  # no egg without lime or lemon
            candidates = candidates - self.ing_ids_per_cat['egg']
        return np.array(sorted(candidates))

    def count_in_genes(self, present_ids, keyword):
        if keyword == 'citrus': return len(present_ids & self.ing_ids_per_cat['citrus'])
        elif keyword == 'bubbles': return len(present_ids & self.ing_ids_per_cat['bubbles'])
        elif keyword == 'liquor': return len(present_ids & self.ing_ids_per_cat['liquor'])
        elif keyword == 'liqueur': return len(present_ids & self.ing_ids_per_cat['liqueur'])
        elif keyword == 'alcohol': return len(present_ids & self.ing_ids_per_cat['alcohol'])
        elif keyword == 'sweeteners': return len(present_ids & self.ing_ids_per_cat['sweeteners'])
        else: raise ValueError

    def get_ingredients_ids_from_list(self, ing_list):
        return [ingredient_list.index(ing) for ing in ing_list]

    def get_ing_count(self):
        return np.sum(self.genes_presence)

    # # # # # # # # # # # # # # # # # # # # # # # #
    # Compute cocktail representations
    # # # # # # # # # # # # # # # # # # # # # # # #

    def get_absent_ing(self):
        return np.argwhere(self.genes_presence==0).flatten()

    def get_present_ing(self):
        return np.argwhere(self.genes_presence==1).flatten()

    def get_ingredient_quantities(self):
        # unnormalize quantities to get real ones
        return (self.genes_quantity * (max_ingredients_quantities * factor_max - min_ingredients_quantities_when_present) + min_ingredients_quantities_when_present) * self.genes_presence

    def get_ing_and_q_from_genes(self):
        present_ings = self.get_present_ing()
        ing_quantities = self.get_ingredient_quantities()
        ingredients, quantities = [], []
        for i_ing in present_ings:
            ingredients.append(ingredient_list[i_ing])
            quantities.append(ing_quantities[i_ing])
        return ingredients, quantities, ing_quantities

    def compute_cocktail_rep(self):
        # only call when genes have changes
        init_time = time.time()
        ingredients, quantities, ing_quantities = self.get_ing_and_q_from_genes()
        # compute cocktail category
        self.category = find_cocktail_sub_category(ingredients, quantities)[0]
        # print(f't1: {time.time() - init_time}')
        init_time = time.time()
        self.prep_type = self.get_prep_type(ing_quantities)
        # print(f't2: {time.time() - init_time}')
        init_time = time.time()
        cocktail_rep, self.end_volume, self.end_alcohol = get_cocktail_rep(self.prep_type, ingredients, quantities, keys=rep_keys[1:]) # volume is added later
        # print(f't3: {time.time() - init_time}')
        init_time = time.time()
        self.cocktail_rep = normalize_cocktail(cocktail_rep)
        # print(f't4: {time.time() - init_time}')
        init_time = time.time()
        self.glass = self.get_glass_type(ing_quantities)
        # print(f't5: {time.time() - init_time}')
        init_time = time.time()
        if self.is_known:
            assert np.abs(self.cocktail_rep - self.target).sum() < 1e-6
        return self.cocktail_rep

    def get_prep_type(self, quantities=None):
        if self.is_known: return self.known_target_dict['prep_type']
        else:
            if quantities is None:
                quantities = self.get_ingredient_quantities()
            if quantities[ingredient_list.index('egg')] > 0:
                prep_cat = 'egg_shaken'
            elif self.category in ['spirit_forward', 'simple_sour_with_juice', 'julep', 'duo', 'ancestral', 'complex_sour_with_juice']:
                # use hard coded rules for most obvious cases determined with the correlations_glass_cat_prep_script
                if self.category in ['ancestral', 'spirit_forward', 'duo']:
                    prep_cat = 'stirred'
                elif self.category in ['complex_sour_with_juice', 'julep', 'simple_sour_with_juice']:
                    prep_cat = 'shaken'
                else:
                    raise ValueError
            else:
                output = prep_model(quantities, aux_str='prep_type').flatten()
                output[preparation_list.index('egg_shaken')] = -np.inf
                prep_cat = preparation_list[np.argmax(output)]
        return prep_cat

    def get_glass_type(self, quantities=None):
        if self.is_known: return self.known_target_dict['glass']
        else:
            if self.category in ['collins', 'complex_highball', 'simple_highball', 'champagne_cocktail', 'complex_sour']:
                # use hard coded rules for most obvious cases determined with the correlations_glass_cat_prep_script
                if self.category in ['collins', 'complex_highball', 'simple_highball']:
                    glass = 'collins'
                elif self.category in ['champagne_cocktail', 'complex_sour']:
                    glass = 'coupe'
            else:
                if quantities is None:
                    quantities = self.get_ingredient_quantities()
                output = prep_model(quantities, aux_str='glasses').flatten()
                glass = glasses_list[np.argmax(output)]
        return glass

    # # # # # # # # # # # # # # # # # # # # # # # #
    # Adapt recipe to fit the glass
    # # # # # # # # # # # # # # # # # # # # # # # #

    def is_too_large_for_glass(self):
        return self.end_volume > glass_volume[self.glass] * 0.80

    def is_too_small_for_glass(self):
        return self.end_volume < glass_volume[self.glass] * 0.3

    def scale_ing_quantities(self, present_ings, factor):
        qs = self.get_ingredient_quantities().copy()
        qs[present_ings] *= factor
        self.set_genes_from_quantities(present_ings, qs)

    def set_genes_from_quantities(self, present_ings, quantities):
        genes_quantity = np.clip((quantities - min_ingredients_quantities_when_present) /
                                 (factor_max * max_ingredients_quantities - min_ingredients_quantities_when_present), 0, 1)
        self.genes_quantity[present_ings] = genes_quantity[present_ings]

    def make_recipe_fit_the_glass(self):
        # check if citrus, if not remove egg
        present_ids = np.argwhere(self.genes_presence == 1).flatten()
        ing_list = self.ing_list[present_ids]
        present_ids = set(present_ids)
        if self.count_in_genes(present_ids, 'citrus') == 0 and 'egg' in ing_list:
            if self.genes_presence.sum() > 2:
                i_egg = ingredient_list.index('egg')
                self.genes_presence[i_egg] = 0.
                self.compute_cocktail_rep()


        i_trial = 0
        present_ings = self.get_present_ing()
        while self.is_too_large_for_glass():
            i_trial += 1
            end_volume = self.end_volume
            desired_volume = glass_volume[self.glass] * 0.80
            ratio = desired_volume / end_volume
            self.scale_ing_quantities(present_ings, factor=ratio)
            self.compute_cocktail_rep()
            if end_volume == self.end_volume: break
            if i_trial == 10: break
        while self.is_too_small_for_glass():
            i_trial += 1
            end_volume = self.end_volume
            desired_volume = glass_volume[self.glass] * 0.80
            ratio = desired_volume / end_volume
            self.scale_ing_quantities(present_ings, factor=ratio)
            self.compute_cocktail_rep()
            if end_volume == self.end_volume: break
            if i_trial == 10: break

    # # # # # # # # # # # # # # # # # # # # # # # #
    # Compute performance
    # # # # # # # # # # # # # # # # # # # # # # # #

    def passes_checks(self):
        present_ids = np.argwhere(self.genes_presence==1).flatten()
        # ing_list = self.ing_list[present_ids]
        present_ids = set(present_ids)
        if len(present_ids) < 2 or len(present_ids) > 8: return False
        # if self.is_too_large_for_glass(): return False
        # if self.is_too_small_for_glass(): return False
        if self.end_alcohol < 0.05 or self.end_alcohol > 0.31: return False
        if self.count_in_genes(present_ids, 'sweeteners')  > 2: return False
        if self.count_in_genes(present_ids, 'liqueur')  > 2: return False
        if self.count_in_genes(present_ids, 'liquor')  > 3: return False
        # if self.count_in_genes(present_ids, 'citrus') == 0 and 'egg' in ing_list: return False
        if self.count_in_genes(present_ids, 'bubbles') > 1: return False
        else: return True

    def get_affective_cluster(self):
        cocktail_rep_affective = get_normalized_affective_cocktail_rep_from_normalized_cocktail_rep(self.cocktail_rep)
        self.affective_cluster = cocktail2affective_cluster(cocktail_rep_affective)[0]
        return self.affective_cluster

    def does_affective_cluster_match(self):
        return True#self.get_affective_cluster() == self.target_affective_cluster

    def compute_perf(self):
        if not self.passes_checks(): self.perf = -100
        else:
            if self.dist == 'mse':
                # self.perf = - np.sqrt(((self.cocktail_rep - self.target)**2).mean())
                self.perf = - np.sqrt(np.dot((self.cocktail_rep - self.target)**2, weights_mse_computation))
                self.perf *= weights_perf_n_ing[int(self.genes_presence.sum())]
                if not self.does_affective_cluster_match():
                    self.perf *= 2
            else: raise NotImplemented


    # # # # # # # # # # # # # # # # # # # # # # # #
    # Mutations and crossover
    # # # # # # # # # # # # # # # # # # # # # # # #

    def get_child(self):
        time_dict = dict()
        init_time = time.time()
        child = IndividualCocktail(pop_params=self.pop_params, target_affective_cluster=self.target_affective_cluster,
                                   target=self.target, genes_presence=self.genes_presence.copy(),
                                   genes_quantity=self.genes_quantity.copy(), compute_perf=False)
        time_dict['    asexual child creation'] = [time.time() - init_time]
        init_time = time.time()
        this_time_dict = child.mutate()
        time_dict = self.update_time_dict(time_dict, this_time_dict)
        time_dict['    asexual child mutation'] = [time.time() - init_time]
        return child, time_dict

    def get_child_with(self, other_parent):
        time_dict = dict()
        init_time = time.time()
        new_genes_presence = np.zeros(self.n_genes)
        present_ing = self.get_present_ing()
        other_present_ing = other_parent.get_present_ing()
        new_genes_quantity = np.random.uniform(0, 1, size=self.n_genes)
        shared_ingredients = sorted(set(present_ing) & set(other_present_ing))
        unique_ingredients_one = sorted(set(present_ing) - set(other_present_ing))
        unique_ingredients_two = sorted(set(other_present_ing) - set(present_ing))
        for i in shared_ingredients:
            new_genes_presence[i] = 1
            new_genes_quantity[i] = (self.genes_quantity[i] + other_parent.genes_quantity[i]) / 2
        time_dict['    crossover child creation'] = [time.time() - init_time]
        init_time = time.time()
        # add one alcohol if none present
        if len(set(np.argwhere(new_genes_presence==1).flatten()).intersection(ind_alcohol)) == 0:
            new_genes_presence[np.random.choice(ind_alcohol)] = 1
        # up to here, we respect the constraints (assuming both parents do).
        candidate_genes = np.array(unique_ingredients_one + unique_ingredients_two)
        candidate_quantities = np.array([self.genes_quantity[i] for i in unique_ingredients_one] + [other_parent.genes_quantity[i] for i in unique_ingredients_two])
        indexes = np.arange(len(candidate_genes))
        np.random.shuffle(indexes)
        candidate_genes = candidate_genes[indexes]
        candidate_quantities = candidate_quantities[indexes]
        time_dict['    crossover prepare selection'] = [time.time() - init_time]
        init_time = time.time()
        # now let's try to add each of them while respecting the constraints
        for i in range(len(indexes)):
            if np.random.rand() < 0.5 or np.sum(new_genes_presence) < self.min_ingredients:  # only try to add one every two ingredient
                ing_id = candidate_genes[i]
                q = candidate_quantities[i]
                new_genes_presence[ing_id] = 1
                new_genes_quantity[ing_id] = q
                if np.sum(new_genes_presence) == self.max_ingredients:
                    break
        time_dict['    crossover do selection'] = [time.time() - init_time]
        init_time = time.time()
        # create new child
        child = IndividualCocktail(pop_params=self.pop_params, target_affective_cluster=self.target_affective_cluster, target=self.target,
                                   genes_presence=new_genes_presence.copy(), genes_quantity=new_genes_quantity.copy(), compute_perf=False)
        time_dict['    crossover create child'] = [time.time() - init_time]
        init_time = time.time()
        this_time_dict = child.mutate()
        time_dict = self.update_time_dict(time_dict, this_time_dict)
        time_dict['    crossover child mutation'] = [time.time() - init_time]
        init_time = time.time()
        return child, time_dict

    def mutate(self):
        # self.print_recipe()
        time_dict = dict()
        # remove an ingredient
        init_time = time.time()
        present_ids = set(np.argwhere(self.genes_presence==1).flatten())

        if np.random.rand() < self.mutation_params['p_remove_ing']:
            if self.get_ing_count() > self.min_ingredients:
                candidate_ings = self.get_present_ing()
                if self.count_in_genes(present_ids, 'alcohol') == 1:  # make sure we keep at least one liquor
                    candidate_ings = np.array(sorted(set(candidate_ings) - set(ind_alcohol)))
                index_to_remove = np.random.choice(candidate_ings)
                self.genes_presence[index_to_remove] = 0
            time_dict['      mutation remove ing'] = [time.time() - init_time]
        init_time = time.time()
        # add an ingredient
        if np.random.rand() < self.mutation_params['p_add_ing']:
            if self.get_ing_count() < self.max_ingredients:
                candidate_ings = self.get_candidate_ingredients_ids(self.genes_presence.copy())
                index_to_add = np.random.choice(candidate_ings, p=density_ingredients[candidate_ings] / np.sum(density_ingredients[candidate_ings]))
                self.genes_presence[index_to_add] = 1
                time_dict['      mutation add ing'] = [time.time() - init_time]

        init_time = time.time()
        # replace ings by others from the same family
        if np.random.rand() < self.mutation_params['p_switch_ing']:
            i = np.random.choice(self.get_present_ing())
            ing_str = ingredient_list[i]
            if ing_str not in ['sparkling wine', 'orange juice']:
                if ing_str in bubble_ingredients:
                    candidates_ids = np.array(sorted(self.ing_ids_per_cat['bubbles'] - set([i])))
                    new_bubble = np.random.choice(candidates_ids, p=density_ingredients[candidates_ids] / np.sum(density_ingredients[candidates_ids]))
                    self.genes_presence[i] = 0
                    self.genes_presence[new_bubble] = 1
                    self.genes_quantity[new_bubble] = self.genes_quantity[i] # copy quantity
                categories = ['acid', 'bitters', 'juice', 'liqueur', 'liquor', 'sweeteners', 'vermouth']
                for cat in categories:
                    if ing_str in ingredients_per_type[cat]:
                        present_ings = self.get_present_ing()
                        candidates_ids = np.array(sorted(self.ing_ids_per_cat[cat] - set([i]) - set(present_ings)))
                        if len(candidates_ids) > 0:
                            replacing_ing = np.random.choice(candidates_ids, p=density_ingredients[candidates_ids] / np.sum(density_ingredients[candidates_ids]))
                            self.genes_presence[i] = 0
                            self.genes_presence[replacing_ing] = 1
                            self.genes_quantity[replacing_ing] = self.genes_quantity[i]  # copy quantity
                        break
        time_dict['      mutation switch ing'] = [time.time() - init_time]
        init_time = time.time()
        # add noise on ing quantity
        for i in self.get_present_ing():
            if np.random.rand() < self.mutation_params['p_change_q']:
                self.genes_quantity[i] += np.random.randn() * self.mutation_params['delta_change_q']
        self.genes_quantity = np.clip(self.genes_quantity, 0, 1)
        time_dict['      mutation change quantity'] = [time.time() - init_time]

        init_time = time.time()
        self.compute_cocktail_rep()
        time_dict['      mutation compute cocktail rep'] = [time.time() - init_time]
        init_time = time.time()
        # self.make_recipe_fit_the_glass()
        time_dict['      mutation check glass fit'] = [time.time() - init_time]
        init_time = time.time()
        self.compute_perf()
        time_dict['      mutation compute perf'] = [time.time() - init_time]
        init_time = time.time()
        stop = 1
        return time_dict


    def update_time_dict(self, main_dict, new_dict):
        for k in new_dict.keys():
            if k in main_dict.keys():
                main_dict[k].append(np.sum(new_dict[k]))
            else:
                main_dict[k] = [np.sum(new_dict[k])]
        return main_dict

    # # # # # # # # # # # # # # # # # # # # # # # #
    # Get recipe and print
    # # # # # # # # # # # # # # # # # # # # # # # #

    def get_recipe(self, unit='mL', name=None):
        ing_quantities = self.get_ingredient_quantities()
        ingredients, quantities = [], []
        for i_ing, q_ing in enumerate(ing_quantities):
            if q_ing > 0.8:
                ingredients.append(ingredient_list[i_ing])
                quantities.append(round(q_ing))
        recipe_str = format_ingredients(ingredients, quantities)
        recipe_str_readable = print_recipe(unit=unit, ingredient_str=recipe_str, name=name, to_print=False)
        return ingredients, quantities, recipe_str, recipe_str_readable

    def get_instructions(self):
        ing_quantities = self.get_ingredient_quantities()
        ingredients, quantities = [], []
        for i_ing, q_ing in enumerate(ing_quantities):
            if q_ing > 0.8:
                ingredients.append(ingredient_list[i_ing])
                quantities.append(round(q_ing))
        str_out = 'Instructions:\n   '

        if 'mint' in ingredients:
            i_mint = ingredients.index('mint')
            n_leaves = quantities[i_mint]
            str_out += f'Add {n_leaves} mint leaves to a shaker, followed by an ice cube.\n   Muddle the mint and ice together with a muddler.\n   '
        bubbles = ['sparkling wine', 'tonic', 'soda', 'ginger beer']
        other_ings = [ing for ing in ingredients if ing not in ['egg', 'angostura', 'orange bitters'] + bubbles]

        if self.prep_type == 'built':
            str_out += 'Add a large ice cube in the glass.\n   '
        # add ingredients to pour
        str_out += 'Pour'
        for i, ing in enumerate(other_ings):
            if i == len(other_ings) - 2:
                str_out += f' {ing} and'
            elif i == len(other_ings) - 1:
                str_out += f' {ing}'
            else:
                str_out += f' {ing},'

        if self.prep_type in ['built'] and 'mint' not in ingredients:
            str_out += ' into the glass.\n   '
        else:
            str_out += ' into the shaker.\n   '

        if self.prep_type == 'egg_shaken' and 'egg' in ingredients:
            str_out += 'Add the egg white.\n   Dry-shake for 15s (without ice), then fill with ice and shake for another 15s.\n   Serve into the glass through a strainer.\n   '
        elif 'shaken' in self.prep_type:
            str_out += 'Fill with ice and shake for 15s.\n   Serve into the glass through a strainer.\n   '
        elif self.prep_type == 'stirred':
            str_out += 'Add ice and stir the cocktail with a spoon for 15s.\n   Serve into the glass through a strainer.\n   '
        elif self.prep_type == 'built':
            str_out += 'Stir two turns with a spoon.\n   '

        bubble_ing = [ing for ing in ingredients if ing in bubbles]
        if len(bubble_ing) > 0:
            str_out += f'Top up with '
            for ing in bubble_ing:
                str_out += f'{ing}, '
            str_out = str_out[:-2] + '.\n   '
        bitter_ing = [ing for ing in ingredients if ing in ['angostura', 'orange bitters']]
        if len(bitter_ing) > 0:
            if len(bitter_ing) == 1:
                q = quantities[ingredients.index(bitter_ing[0])]
                n_dashes = max(1, int(q / 0.6))
                str_out += f'Add {n_dashes} dash'
                if n_dashes > 1:
                    str_out += 'es'
                str_out += f' of {bitter_ing[0]}.\n   '
            elif len(bitter_ing) == 2:
                q = quantities[ingredients.index(bitter_ing[0])]
                n_dashes = max(1, int(q / 0.6))
                str_out += f'Add {n_dashes} dash'
                if n_dashes > 1:
                    str_out += 'es'
                str_out += f' of {bitter_ing[0]} and '
                q = quantities[ingredients.index(bitter_ing[1])]
                n_dashes = max(1, int(q / 0.6))
                str_out += f'{n_dashes} dash'
                if n_dashes > 1:
                    str_out += 'es'
                str_out += f' of {bitter_ing[1]}.\n   '
        str_out += 'Enjoy!'
        return str_out

    def print_recipe(self, name=None):
        print(self.get_recipe(name)[3])