Spaces:
Runtime error
Runtime error
import gradio as gr | |
import pandas as pd | |
dataframe = pd.read_csv('data/general.csv') | |
NUM_DATASETS = 7 | |
NUM_SCORES = 0 | |
NUM_MODELS = len(dataframe) | |
def general_dataframe_update(): | |
""" | |
Returns general dataframe for general table. | |
""" | |
dataframe = pd.read_csv('data/general.csv') | |
return dataframe | |
def classification_dataframe_update(): | |
""" | |
Returns classification dataframe for classification table. | |
""" | |
dataframe = pd.read_csv('data/classification.csv') | |
return dataframe | |
def sts_dataframe_udpate(): | |
""" | |
Returns sts dataframe for sts table. | |
""" | |
dataframe = pd.read_csv('data/sts.csv') | |
return dataframe | |
def clustering_dataframe_update(): | |
""" | |
Returns clustering dataframe for clustering table. | |
""" | |
dataframe = pd.read_csv("data/clustering.csv") | |
return dataframe | |
def retrieval_dataframe_update(): | |
""" | |
Returns retrieval dataframe for retrieval table. | |
""" | |
dataframe = pd.read_csv('data/retrieval.csv') | |
return dataframe | |
def make_clickable_model(link): | |
""" | |
Load json from models. Este update lo tengo que hacer antes de pasarle el df al gradio. | |
""" | |
model_display_name = link.split("/")[-1] | |
# Remove user from model name | |
return ( | |
f'<a target="_blank" style="text-decoration: underline" href="{link}">{model_display_name.split("/")[-1]}</a>' | |
) | |
block = gr.Blocks() | |
with block: | |
gr.Markdown(f"""**Leaderboard de modelos de Embeddings en español | |
Massive Spanish Text Embedding Benchmark (MSTEB) Leaderboard.** | |
- **Total Datasets**: {NUM_DATASETS} | |
- **Total Languages**: 1 | |
- **Total Scores**: {NUM_SCORES} | |
- **Total Models**: {NUM_MODELS} | |
""") | |
with gr.Tabs(): | |
with gr.TabItem("Overall"): | |
with gr.Row(): | |
gr.Markdown(""" | |
**Tabla General de Embeddings** | |
- **Métricas:** Varias, con sus respectivas medias. | |
- **Idioma:** Español | |
""") | |
with gr.Row(): | |
overall = general_dataframe_update() | |
data_overall = gr.components.Dataframe( | |
overall, | |
type="pandas", | |
wrap=True, | |
) | |
with gr.TabItem("Classification"): | |
with gr.Row(): | |
gr.Markdown(""" | |
**Tabla Classification de Embeddings** | |
- **Métricas:** Accuracy. | |
- **Idioma:** Español | |
""") | |
with gr.Row(): | |
# Create and display a sample DataFrame | |
classification = classification_dataframe_update() | |
data_overall = gr.components.Dataframe( | |
classification, | |
type="pandas", | |
wrap=True, | |
) | |
with gr.TabItem("STS"): | |
with gr.Row(): | |
gr.Markdown(""" | |
**Tabla STS de Embeddings** | |
- **Metricas:** Spearman correlation basada en cosine similarity. | |
- **Idioma:** Español | |
""") | |
with gr.Row(): | |
# Create and display a sample DataFrame | |
sts = sts_dataframe_udpate() | |
data_overall = gr.components.Dataframe( | |
sts, | |
type="pandas", | |
wrap=True, | |
) | |
with gr.TabItem("Clustering"): | |
with gr.Row(): | |
gr.Markdown(""" | |
**Tabla Clustering de Embeddings** | |
- **Metricas:** V_measure. | |
- **Idioma:** Español | |
""") | |
with gr.Row(): | |
# Create and display a sample DataFrame | |
clustering = clustering_dataframe_update() | |
data_overall = gr.components.Dataframe( | |
clustering, | |
type="pandas", | |
wrap=True, | |
) | |
with gr.TabItem("Retrieval"): | |
with gr.Row(): | |
gr.Markdown(""" | |
**Tabla Retrieval de Embeddings** | |
- **Metricas:** ncdg_10. | |
- **Idioma:** Español | |
""") | |
with gr.Row(): | |
# Create and display a sample DataFrame | |
sts = retrieval_dataframe_update() | |
data_overall = gr.components.Dataframe( | |
sts, | |
type="pandas", | |
wrap=True, | |
) | |
block.launch() | |