Update app.py
Browse files
app.py
CHANGED
@@ -1,320 +1,320 @@
|
|
1 |
-
import random
|
2 |
-
|
3 |
-
import gradio as gr
|
4 |
-
import torch
|
5 |
-
import torchvision
|
6 |
-
import torchvision.transforms as transforms
|
7 |
-
from PIL import Image
|
8 |
-
from torch import nn
|
9 |
-
from torchvision.models import mobilenet_v2, resnet18
|
10 |
-
from torchvision.transforms.functional import InterpolationMode
|
11 |
-
|
12 |
-
datasets_n_classes = {
|
13 |
-
"Imagenette": 10,
|
14 |
-
"Imagewoof": 10,
|
15 |
-
"Stanford_dogs": 120,
|
16 |
-
}
|
17 |
-
|
18 |
-
datasets_model_types = {
|
19 |
-
"Imagenette": [
|
20 |
-
"base_200",
|
21 |
-
"base_200+100",
|
22 |
-
"synthetic_200",
|
23 |
-
"augment_noisy_200",
|
24 |
-
"augment_noisy_200+100",
|
25 |
-
"augment_clean_200",
|
26 |
-
],
|
27 |
-
"Imagewoof": [
|
28 |
-
"base_200",
|
29 |
-
"base_200+100",
|
30 |
-
"synthetic_200",
|
31 |
-
"augment_noisy_200",
|
32 |
-
"augment_noisy_200+100",
|
33 |
-
"augment_clean_200",
|
34 |
-
],
|
35 |
-
"Stanford_dogs": [
|
36 |
-
"base_200",
|
37 |
-
"base_200+100",
|
38 |
-
"synthetic_200",
|
39 |
-
"augment_noisy_200",
|
40 |
-
"augment_noisy_200+100",
|
41 |
-
],
|
42 |
-
}
|
43 |
-
|
44 |
-
model_arch = ["resnet18", "mobilenet_v2"]
|
45 |
-
|
46 |
-
list_200 = [
|
47 |
-
"Original",
|
48 |
-
"Synthetic",
|
49 |
-
"Original + Synthetic (Noisy)",
|
50 |
-
"Original + Synthetic (Clean)",
|
51 |
-
]
|
52 |
-
|
53 |
-
list_200_100 = ["Base+100", "AugmentNoisy+100"]
|
54 |
-
|
55 |
-
methods_map = {
|
56 |
-
"200 Epochs": list_200,
|
57 |
-
"200 Epochs on Original + 100": list_200_100,
|
58 |
-
}
|
59 |
-
|
60 |
-
label_map = dict()
|
61 |
-
label_map["Imagenette (10 classes)"] = "Imagenette"
|
62 |
-
label_map["Imagewoof (10 classes)"] = "Imagewoof"
|
63 |
-
label_map["Stanford Dogs (120 classes)"] = "Stanford_dogs"
|
64 |
-
label_map["ResNet-18"] = "resnet18"
|
65 |
-
label_map["MobileNetV2"] = "mobilenet_v2"
|
66 |
-
label_map["200 Epochs"] = "200"
|
67 |
-
label_map["200 Epochs on Original + 100"] = "200+100"
|
68 |
-
label_map["Original"] = "base"
|
69 |
-
label_map["Synthetic"] = "synthetic"
|
70 |
-
label_map["Original + Synthetic (Noisy)"] = "augment_noisy"
|
71 |
-
label_map["Original + Synthetic (Clean)"] = "augment_clean"
|
72 |
-
label_map["Base+100"] = "base"
|
73 |
-
label_map["AugmentNoisy+100"] = "augment_noisy"
|
74 |
-
|
75 |
-
dataset_models = dict()
|
76 |
-
for dataset, n_classes in datasets_n_classes.items():
|
77 |
-
models = dict()
|
78 |
-
for model_type in datasets_model_types[dataset]:
|
79 |
-
for arch in model_arch:
|
80 |
-
if arch == "resnet18":
|
81 |
-
model = resnet18(weights=None, num_classes=n_classes)
|
82 |
-
models[f"{arch}_{model_type}"] = (
|
83 |
-
model,
|
84 |
-
f"./models/{arch}/{dataset}/{dataset}_{model_type}.pth",
|
85 |
-
)
|
86 |
-
elif arch == "mobilenet_v2":
|
87 |
-
model = mobilenet_v2(weights=None, num_classes=n_classes)
|
88 |
-
models[f"{arch}_{model_type}"] = (
|
89 |
-
model,
|
90 |
-
f"./models/{arch}/{dataset}/{dataset}_{model_type}.pth",
|
91 |
-
)
|
92 |
-
else:
|
93 |
-
raise ValueError(f"Model architecture unavailable: {arch}")
|
94 |
-
dataset_models[dataset] = models
|
95 |
-
|
96 |
-
|
97 |
-
def get_random_image(dataset, label_map=label_map) -> Image:
|
98 |
-
dataset_root = f"./data/{label_map[dataset]}/val"
|
99 |
-
dataset_img = torchvision.datasets.ImageFolder(
|
100 |
-
dataset_root,
|
101 |
-
transforms.Compose([transforms.PILToTensor()]),
|
102 |
-
)
|
103 |
-
random_idx = random.randint(0, len(dataset_img) - 1)
|
104 |
-
image, _ = dataset_img[random_idx]
|
105 |
-
image = transforms.ToPILImage()(image)
|
106 |
-
image = image.resize(
|
107 |
-
(256, 256),
|
108 |
-
)
|
109 |
-
return image
|
110 |
-
|
111 |
-
|
112 |
-
def load_model(model_dict, model_name: str) -> nn.Module:
|
113 |
-
model_name_lower = model_name.lower()
|
114 |
-
if model_name_lower in model_dict:
|
115 |
-
model = model_dict[model_name_lower][0]
|
116 |
-
model_path = model_dict[model_name_lower][1]
|
117 |
-
if torch.cuda.is_available():
|
118 |
-
checkpoint = torch.load(model_path)
|
119 |
-
else:
|
120 |
-
checkpoint = torch.load(model_path, map_location="cpu")
|
121 |
-
if "setup" in checkpoint:
|
122 |
-
if checkpoint["setup"]["distributed"]:
|
123 |
-
torch.nn.modules.utils.consume_prefix_in_state_dict_if_present(
|
124 |
-
checkpoint["model"], "module."
|
125 |
-
)
|
126 |
-
model.load_state_dict(checkpoint["model"])
|
127 |
-
else:
|
128 |
-
model.load_state_dict(checkpoint)
|
129 |
-
return model
|
130 |
-
else:
|
131 |
-
raise ValueError(
|
132 |
-
f"Model {model_name} is not available for image prediction. Please choose from {[name.capitalize() for name in model_dict.keys()]}."
|
133 |
-
)
|
134 |
-
|
135 |
-
|
136 |
-
def postprocess_default(labels, output) -> dict:
|
137 |
-
probabilities = nn.functional.softmax(output[0], dim=0)
|
138 |
-
top_prob, top_catid = torch.topk(probabilities, 5)
|
139 |
-
confidences = {
|
140 |
-
labels[top_catid.tolist()[i]]: top_prob.tolist()[i]
|
141 |
-
for i in range(top_prob.shape[0])
|
142 |
-
}
|
143 |
-
return confidences
|
144 |
-
|
145 |
-
|
146 |
-
def classify(
|
147 |
-
input_image: Image,
|
148 |
-
dataset_type: str,
|
149 |
-
arch_type: str,
|
150 |
-
methods: str,
|
151 |
-
training_ds: str,
|
152 |
-
dataset_models=dataset_models,
|
153 |
-
label_map=label_map,
|
154 |
-
) -> dict:
|
155 |
-
for i in [dataset_type, arch_type, methods, training_ds]:
|
156 |
-
if i is None:
|
157 |
-
raise ValueError("Please select all options.")
|
158 |
-
dataset_type = label_map[dataset_type]
|
159 |
-
arch_type = label_map[arch_type]
|
160 |
-
methods = label_map[methods]
|
161 |
-
training_ds = label_map[training_ds]
|
162 |
-
preprocess_input = transforms.Compose(
|
163 |
-
[
|
164 |
-
transforms.Resize(
|
165 |
-
256,
|
166 |
-
interpolation=InterpolationMode.BILINEAR,
|
167 |
-
antialias=True,
|
168 |
-
),
|
169 |
-
transforms.CenterCrop(224),
|
170 |
-
transforms.ToTensor(),
|
171 |
-
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
172 |
-
]
|
173 |
-
)
|
174 |
-
if input_image is None:
|
175 |
-
raise ValueError("No image was provided.")
|
176 |
-
input_tensor: torch.Tensor = preprocess_input(input_image)
|
177 |
-
input_batch = input_tensor.unsqueeze(0)
|
178 |
-
model = load_model(
|
179 |
-
dataset_models[dataset_type], f"{arch_type}_{training_ds}_{methods}"
|
180 |
-
)
|
181 |
-
|
182 |
-
if torch.cuda.is_available():
|
183 |
-
input_batch = input_batch.to("cuda")
|
184 |
-
model.to("cuda")
|
185 |
-
|
186 |
-
model.eval()
|
187 |
-
with torch.inference_mode():
|
188 |
-
output: torch.Tensor = model(input_batch)
|
189 |
-
with open(f"./data/{dataset_type}.txt", "r") as f:
|
190 |
-
labels = {i: line.strip() for i, line in enumerate(f.readlines())}
|
191 |
-
return postprocess_default(labels, output)
|
192 |
-
|
193 |
-
|
194 |
-
def update_methods(method, ds_type):
|
195 |
-
if ds_type == "Stanford Dogs (120 classes)" and method == "200 Epochs":
|
196 |
-
methods = list_200[:-1]
|
197 |
-
else:
|
198 |
-
methods = methods_map[method]
|
199 |
-
return gr.update(choices=methods, value=None)
|
200 |
-
|
201 |
-
|
202 |
-
def downloadModel(
|
203 |
-
dataset_type, arch_type, methods, training_ds, dataset_models=dataset_models
|
204 |
-
):
|
205 |
-
for i in [dataset_type, arch_type, methods, training_ds]:
|
206 |
-
if i is None:
|
207 |
-
return gr.update(label="Select Model", value=None)
|
208 |
-
dataset_type = label_map[dataset_type]
|
209 |
-
arch_type = label_map[arch_type]
|
210 |
-
methods = label_map[methods]
|
211 |
-
training_ds = label_map[training_ds]
|
212 |
-
if f"{arch_type}_{training_ds}_{methods}" not in dataset_models[dataset_type]:
|
213 |
-
return gr.update(label="Select Model", value=None)
|
214 |
-
model_path = dataset_models[dataset_type][f"{arch_type}_{training_ds}_{methods}"][1]
|
215 |
-
return gr.update(
|
216 |
-
label=f"Download Model: '{dataset_type}_{arch_type}_{training_ds}_{methods}'",
|
217 |
-
value=model_path,
|
218 |
-
)
|
219 |
-
|
220 |
-
|
221 |
-
if __name__ == "__main__":
|
222 |
-
with gr.Blocks(title="Generative Augmented Image Classifiers") as demo:
|
223 |
-
gr.Markdown(
|
224 |
-
"""
|
225 |
-
# Generative Augmented Image Classifiers
|
226 |
-
Main GitHub Repo: [Generative Data Augmentation](https://github.com/zhulinchng/generative-data-augmentation) | Generative Data Augmentation Demo: [Generative Data Augmented](https://huggingface.co/spaces/czl/generative-data-augmentation-demo).
|
227 |
-
"""
|
228 |
-
)
|
229 |
-
with gr.Row():
|
230 |
-
with gr.Column():
|
231 |
-
dataset_type = gr.Radio(
|
232 |
-
choices=[
|
233 |
-
"Imagenette (10 classes)",
|
234 |
-
"Imagewoof (10 classes)",
|
235 |
-
"Stanford Dogs (120 classes)",
|
236 |
-
],
|
237 |
-
label="Dataset",
|
238 |
-
value="Imagenette (10 classes)",
|
239 |
-
)
|
240 |
-
arch_type = gr.Radio(
|
241 |
-
choices=["ResNet-18", "MobileNetV2"],
|
242 |
-
label="Model Architecture",
|
243 |
-
value="ResNet-18",
|
244 |
-
interactive=True,
|
245 |
-
)
|
246 |
-
methods = gr.Radio(
|
247 |
-
label="Methods",
|
248 |
-
choices=["200 Epochs", "200 Epochs on Original + 100"],
|
249 |
-
interactive=True,
|
250 |
-
value="200 Epochs",
|
251 |
-
)
|
252 |
-
training_ds = gr.Radio(
|
253 |
-
label="Training Dataset",
|
254 |
-
choices=methods_map["200 Epochs"],
|
255 |
-
interactive=True,
|
256 |
-
value="Original",
|
257 |
-
)
|
258 |
-
dataset_type.change(
|
259 |
-
fn=update_methods,
|
260 |
-
inputs=[methods, dataset_type],
|
261 |
-
outputs=[training_ds],
|
262 |
-
)
|
263 |
-
methods.change(
|
264 |
-
fn=update_methods,
|
265 |
-
inputs=[methods, dataset_type],
|
266 |
-
outputs=[training_ds],
|
267 |
-
)
|
268 |
-
random_image_output = gr.Image(type="pil", label="Image to Classify")
|
269 |
-
with gr.Row():
|
270 |
-
generate_button = gr.Button("Sample Random Image")
|
271 |
-
classify_button_random = gr.Button("Classify")
|
272 |
-
with gr.Column():
|
273 |
-
output_label_random = gr.Label(num_top_classes=5)
|
274 |
-
download_model = gr.DownloadButton(
|
275 |
-
label=f"Download Model: '{label_map[dataset_type.value]}_{label_map[arch_type.value]}_{label_map[training_ds.value]}_{label_map[methods.value]}'",
|
276 |
-
value=dataset_models[label_map[dataset_type.value]][
|
277 |
-
f"{label_map[arch_type.value]}_{label_map[training_ds.value]}_{label_map[methods.value]}"
|
278 |
-
][1],
|
279 |
-
)
|
280 |
-
dataset_type.change(
|
281 |
-
fn=downloadModel,
|
282 |
-
inputs=[dataset_type, arch_type, methods, training_ds],
|
283 |
-
outputs=[download_model],
|
284 |
-
)
|
285 |
-
arch_type.change(
|
286 |
-
fn=downloadModel,
|
287 |
-
inputs=[dataset_type, arch_type, methods, training_ds],
|
288 |
-
outputs=[download_model],
|
289 |
-
)
|
290 |
-
methods.change(
|
291 |
-
fn=downloadModel,
|
292 |
-
inputs=[dataset_type, arch_type, methods, training_ds],
|
293 |
-
outputs=[download_model],
|
294 |
-
)
|
295 |
-
training_ds.change(
|
296 |
-
fn=downloadModel,
|
297 |
-
inputs=[dataset_type, arch_type, methods, training_ds],
|
298 |
-
outputs=[download_model],
|
299 |
-
)
|
300 |
-
gr.Markdown(
|
301 |
-
"""
|
302 |
-
This demo showcases the performance of image classifiers trained on various datasets as part of the project '
|
303 |
-
|
304 |
-
View the models and files used in this demo [here](https://huggingface.co/spaces/czl/generative-augmented-classifiers/tree/main).
|
305 |
-
|
306 |
-
Usage Instructions & Documentation [here](https://huggingface.co/spaces/czl/generative-augmented-classifiers/blob/main/README.md).
|
307 |
-
"""
|
308 |
-
)
|
309 |
-
|
310 |
-
generate_button.click(
|
311 |
-
get_random_image,
|
312 |
-
inputs=[dataset_type],
|
313 |
-
outputs=random_image_output,
|
314 |
-
)
|
315 |
-
classify_button_random.click(
|
316 |
-
classify,
|
317 |
-
inputs=[random_image_output, dataset_type, arch_type, methods, training_ds],
|
318 |
-
outputs=output_label_random,
|
319 |
-
)
|
320 |
-
demo.launch(show_error=True)
|
|
|
1 |
+
import random
|
2 |
+
|
3 |
+
import gradio as gr
|
4 |
+
import torch
|
5 |
+
import torchvision
|
6 |
+
import torchvision.transforms as transforms
|
7 |
+
from PIL import Image
|
8 |
+
from torch import nn
|
9 |
+
from torchvision.models import mobilenet_v2, resnet18
|
10 |
+
from torchvision.transforms.functional import InterpolationMode
|
11 |
+
|
12 |
+
datasets_n_classes = {
|
13 |
+
"Imagenette": 10,
|
14 |
+
"Imagewoof": 10,
|
15 |
+
"Stanford_dogs": 120,
|
16 |
+
}
|
17 |
+
|
18 |
+
datasets_model_types = {
|
19 |
+
"Imagenette": [
|
20 |
+
"base_200",
|
21 |
+
"base_200+100",
|
22 |
+
"synthetic_200",
|
23 |
+
"augment_noisy_200",
|
24 |
+
"augment_noisy_200+100",
|
25 |
+
"augment_clean_200",
|
26 |
+
],
|
27 |
+
"Imagewoof": [
|
28 |
+
"base_200",
|
29 |
+
"base_200+100",
|
30 |
+
"synthetic_200",
|
31 |
+
"augment_noisy_200",
|
32 |
+
"augment_noisy_200+100",
|
33 |
+
"augment_clean_200",
|
34 |
+
],
|
35 |
+
"Stanford_dogs": [
|
36 |
+
"base_200",
|
37 |
+
"base_200+100",
|
38 |
+
"synthetic_200",
|
39 |
+
"augment_noisy_200",
|
40 |
+
"augment_noisy_200+100",
|
41 |
+
],
|
42 |
+
}
|
43 |
+
|
44 |
+
model_arch = ["resnet18", "mobilenet_v2"]
|
45 |
+
|
46 |
+
list_200 = [
|
47 |
+
"Original",
|
48 |
+
"Synthetic",
|
49 |
+
"Original + Synthetic (Noisy)",
|
50 |
+
"Original + Synthetic (Clean)",
|
51 |
+
]
|
52 |
+
|
53 |
+
list_200_100 = ["Base+100", "AugmentNoisy+100"]
|
54 |
+
|
55 |
+
methods_map = {
|
56 |
+
"200 Epochs": list_200,
|
57 |
+
"200 Epochs on Original + 100": list_200_100,
|
58 |
+
}
|
59 |
+
|
60 |
+
label_map = dict()
|
61 |
+
label_map["Imagenette (10 classes)"] = "Imagenette"
|
62 |
+
label_map["Imagewoof (10 classes)"] = "Imagewoof"
|
63 |
+
label_map["Stanford Dogs (120 classes)"] = "Stanford_dogs"
|
64 |
+
label_map["ResNet-18"] = "resnet18"
|
65 |
+
label_map["MobileNetV2"] = "mobilenet_v2"
|
66 |
+
label_map["200 Epochs"] = "200"
|
67 |
+
label_map["200 Epochs on Original + 100"] = "200+100"
|
68 |
+
label_map["Original"] = "base"
|
69 |
+
label_map["Synthetic"] = "synthetic"
|
70 |
+
label_map["Original + Synthetic (Noisy)"] = "augment_noisy"
|
71 |
+
label_map["Original + Synthetic (Clean)"] = "augment_clean"
|
72 |
+
label_map["Base+100"] = "base"
|
73 |
+
label_map["AugmentNoisy+100"] = "augment_noisy"
|
74 |
+
|
75 |
+
dataset_models = dict()
|
76 |
+
for dataset, n_classes in datasets_n_classes.items():
|
77 |
+
models = dict()
|
78 |
+
for model_type in datasets_model_types[dataset]:
|
79 |
+
for arch in model_arch:
|
80 |
+
if arch == "resnet18":
|
81 |
+
model = resnet18(weights=None, num_classes=n_classes)
|
82 |
+
models[f"{arch}_{model_type}"] = (
|
83 |
+
model,
|
84 |
+
f"./models/{arch}/{dataset}/{dataset}_{model_type}.pth",
|
85 |
+
)
|
86 |
+
elif arch == "mobilenet_v2":
|
87 |
+
model = mobilenet_v2(weights=None, num_classes=n_classes)
|
88 |
+
models[f"{arch}_{model_type}"] = (
|
89 |
+
model,
|
90 |
+
f"./models/{arch}/{dataset}/{dataset}_{model_type}.pth",
|
91 |
+
)
|
92 |
+
else:
|
93 |
+
raise ValueError(f"Model architecture unavailable: {arch}")
|
94 |
+
dataset_models[dataset] = models
|
95 |
+
|
96 |
+
|
97 |
+
def get_random_image(dataset, label_map=label_map) -> Image:
|
98 |
+
dataset_root = f"./data/{label_map[dataset]}/val"
|
99 |
+
dataset_img = torchvision.datasets.ImageFolder(
|
100 |
+
dataset_root,
|
101 |
+
transforms.Compose([transforms.PILToTensor()]),
|
102 |
+
)
|
103 |
+
random_idx = random.randint(0, len(dataset_img) - 1)
|
104 |
+
image, _ = dataset_img[random_idx]
|
105 |
+
image = transforms.ToPILImage()(image)
|
106 |
+
image = image.resize(
|
107 |
+
(256, 256),
|
108 |
+
)
|
109 |
+
return image
|
110 |
+
|
111 |
+
|
112 |
+
def load_model(model_dict, model_name: str) -> nn.Module:
|
113 |
+
model_name_lower = model_name.lower()
|
114 |
+
if model_name_lower in model_dict:
|
115 |
+
model = model_dict[model_name_lower][0]
|
116 |
+
model_path = model_dict[model_name_lower][1]
|
117 |
+
if torch.cuda.is_available():
|
118 |
+
checkpoint = torch.load(model_path)
|
119 |
+
else:
|
120 |
+
checkpoint = torch.load(model_path, map_location="cpu")
|
121 |
+
if "setup" in checkpoint:
|
122 |
+
if checkpoint["setup"]["distributed"]:
|
123 |
+
torch.nn.modules.utils.consume_prefix_in_state_dict_if_present(
|
124 |
+
checkpoint["model"], "module."
|
125 |
+
)
|
126 |
+
model.load_state_dict(checkpoint["model"])
|
127 |
+
else:
|
128 |
+
model.load_state_dict(checkpoint)
|
129 |
+
return model
|
130 |
+
else:
|
131 |
+
raise ValueError(
|
132 |
+
f"Model {model_name} is not available for image prediction. Please choose from {[name.capitalize() for name in model_dict.keys()]}."
|
133 |
+
)
|
134 |
+
|
135 |
+
|
136 |
+
def postprocess_default(labels, output) -> dict:
|
137 |
+
probabilities = nn.functional.softmax(output[0], dim=0)
|
138 |
+
top_prob, top_catid = torch.topk(probabilities, 5)
|
139 |
+
confidences = {
|
140 |
+
labels[top_catid.tolist()[i]]: top_prob.tolist()[i]
|
141 |
+
for i in range(top_prob.shape[0])
|
142 |
+
}
|
143 |
+
return confidences
|
144 |
+
|
145 |
+
|
146 |
+
def classify(
|
147 |
+
input_image: Image,
|
148 |
+
dataset_type: str,
|
149 |
+
arch_type: str,
|
150 |
+
methods: str,
|
151 |
+
training_ds: str,
|
152 |
+
dataset_models=dataset_models,
|
153 |
+
label_map=label_map,
|
154 |
+
) -> dict:
|
155 |
+
for i in [dataset_type, arch_type, methods, training_ds]:
|
156 |
+
if i is None:
|
157 |
+
raise ValueError("Please select all options.")
|
158 |
+
dataset_type = label_map[dataset_type]
|
159 |
+
arch_type = label_map[arch_type]
|
160 |
+
methods = label_map[methods]
|
161 |
+
training_ds = label_map[training_ds]
|
162 |
+
preprocess_input = transforms.Compose(
|
163 |
+
[
|
164 |
+
transforms.Resize(
|
165 |
+
256,
|
166 |
+
interpolation=InterpolationMode.BILINEAR,
|
167 |
+
antialias=True,
|
168 |
+
),
|
169 |
+
transforms.CenterCrop(224),
|
170 |
+
transforms.ToTensor(),
|
171 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
172 |
+
]
|
173 |
+
)
|
174 |
+
if input_image is None:
|
175 |
+
raise ValueError("No image was provided.")
|
176 |
+
input_tensor: torch.Tensor = preprocess_input(input_image)
|
177 |
+
input_batch = input_tensor.unsqueeze(0)
|
178 |
+
model = load_model(
|
179 |
+
dataset_models[dataset_type], f"{arch_type}_{training_ds}_{methods}"
|
180 |
+
)
|
181 |
+
|
182 |
+
if torch.cuda.is_available():
|
183 |
+
input_batch = input_batch.to("cuda")
|
184 |
+
model.to("cuda")
|
185 |
+
|
186 |
+
model.eval()
|
187 |
+
with torch.inference_mode():
|
188 |
+
output: torch.Tensor = model(input_batch)
|
189 |
+
with open(f"./data/{dataset_type}.txt", "r") as f:
|
190 |
+
labels = {i: line.strip() for i, line in enumerate(f.readlines())}
|
191 |
+
return postprocess_default(labels, output)
|
192 |
+
|
193 |
+
|
194 |
+
def update_methods(method, ds_type):
|
195 |
+
if ds_type == "Stanford Dogs (120 classes)" and method == "200 Epochs":
|
196 |
+
methods = list_200[:-1]
|
197 |
+
else:
|
198 |
+
methods = methods_map[method]
|
199 |
+
return gr.update(choices=methods, value=None)
|
200 |
+
|
201 |
+
|
202 |
+
def downloadModel(
|
203 |
+
dataset_type, arch_type, methods, training_ds, dataset_models=dataset_models
|
204 |
+
):
|
205 |
+
for i in [dataset_type, arch_type, methods, training_ds]:
|
206 |
+
if i is None:
|
207 |
+
return gr.update(label="Select Model", value=None)
|
208 |
+
dataset_type = label_map[dataset_type]
|
209 |
+
arch_type = label_map[arch_type]
|
210 |
+
methods = label_map[methods]
|
211 |
+
training_ds = label_map[training_ds]
|
212 |
+
if f"{arch_type}_{training_ds}_{methods}" not in dataset_models[dataset_type]:
|
213 |
+
return gr.update(label="Select Model", value=None)
|
214 |
+
model_path = dataset_models[dataset_type][f"{arch_type}_{training_ds}_{methods}"][1]
|
215 |
+
return gr.update(
|
216 |
+
label=f"Download Model: '{dataset_type}_{arch_type}_{training_ds}_{methods}'",
|
217 |
+
value=model_path,
|
218 |
+
)
|
219 |
+
|
220 |
+
|
221 |
+
if __name__ == "__main__":
|
222 |
+
with gr.Blocks(title="Generative Augmented Image Classifiers") as demo:
|
223 |
+
gr.Markdown(
|
224 |
+
"""
|
225 |
+
# Generative Augmented Image Classifiers
|
226 |
+
Main GitHub Repo: [Generative Data Augmentation](https://github.com/zhulinchng/generative-data-augmentation) | Generative Data Augmentation Demo: [Generative Data Augmented](https://huggingface.co/spaces/czl/generative-data-augmentation-demo).
|
227 |
+
"""
|
228 |
+
)
|
229 |
+
with gr.Row():
|
230 |
+
with gr.Column():
|
231 |
+
dataset_type = gr.Radio(
|
232 |
+
choices=[
|
233 |
+
"Imagenette (10 classes)",
|
234 |
+
"Imagewoof (10 classes)",
|
235 |
+
"Stanford Dogs (120 classes)",
|
236 |
+
],
|
237 |
+
label="Dataset",
|
238 |
+
value="Imagenette (10 classes)",
|
239 |
+
)
|
240 |
+
arch_type = gr.Radio(
|
241 |
+
choices=["ResNet-18", "MobileNetV2"],
|
242 |
+
label="Model Architecture",
|
243 |
+
value="ResNet-18",
|
244 |
+
interactive=True,
|
245 |
+
)
|
246 |
+
methods = gr.Radio(
|
247 |
+
label="Methods",
|
248 |
+
choices=["200 Epochs", "200 Epochs on Original + 100"],
|
249 |
+
interactive=True,
|
250 |
+
value="200 Epochs",
|
251 |
+
)
|
252 |
+
training_ds = gr.Radio(
|
253 |
+
label="Training Dataset",
|
254 |
+
choices=methods_map["200 Epochs"],
|
255 |
+
interactive=True,
|
256 |
+
value="Original",
|
257 |
+
)
|
258 |
+
dataset_type.change(
|
259 |
+
fn=update_methods,
|
260 |
+
inputs=[methods, dataset_type],
|
261 |
+
outputs=[training_ds],
|
262 |
+
)
|
263 |
+
methods.change(
|
264 |
+
fn=update_methods,
|
265 |
+
inputs=[methods, dataset_type],
|
266 |
+
outputs=[training_ds],
|
267 |
+
)
|
268 |
+
random_image_output = gr.Image(type="pil", label="Image to Classify")
|
269 |
+
with gr.Row():
|
270 |
+
generate_button = gr.Button("Sample Random Image")
|
271 |
+
classify_button_random = gr.Button("Classify")
|
272 |
+
with gr.Column():
|
273 |
+
output_label_random = gr.Label(num_top_classes=5)
|
274 |
+
download_model = gr.DownloadButton(
|
275 |
+
label=f"Download Model: '{label_map[dataset_type.value]}_{label_map[arch_type.value]}_{label_map[training_ds.value]}_{label_map[methods.value]}'",
|
276 |
+
value=dataset_models[label_map[dataset_type.value]][
|
277 |
+
f"{label_map[arch_type.value]}_{label_map[training_ds.value]}_{label_map[methods.value]}"
|
278 |
+
][1],
|
279 |
+
)
|
280 |
+
dataset_type.change(
|
281 |
+
fn=downloadModel,
|
282 |
+
inputs=[dataset_type, arch_type, methods, training_ds],
|
283 |
+
outputs=[download_model],
|
284 |
+
)
|
285 |
+
arch_type.change(
|
286 |
+
fn=downloadModel,
|
287 |
+
inputs=[dataset_type, arch_type, methods, training_ds],
|
288 |
+
outputs=[download_model],
|
289 |
+
)
|
290 |
+
methods.change(
|
291 |
+
fn=downloadModel,
|
292 |
+
inputs=[dataset_type, arch_type, methods, training_ds],
|
293 |
+
outputs=[download_model],
|
294 |
+
)
|
295 |
+
training_ds.change(
|
296 |
+
fn=downloadModel,
|
297 |
+
inputs=[dataset_type, arch_type, methods, training_ds],
|
298 |
+
outputs=[download_model],
|
299 |
+
)
|
300 |
+
gr.Markdown(
|
301 |
+
"""
|
302 |
+
This demo showcases the performance of image classifiers trained on various datasets as part of the project 'Improving Fine-Grained Image Classification Using Diffusion-Based Generated Synthetic Images' dissertation.
|
303 |
+
|
304 |
+
View the models and files used in this demo [here](https://huggingface.co/spaces/czl/generative-augmented-classifiers/tree/main).
|
305 |
+
|
306 |
+
Usage Instructions & Documentation [here](https://huggingface.co/spaces/czl/generative-augmented-classifiers/blob/main/README.md).
|
307 |
+
"""
|
308 |
+
)
|
309 |
+
|
310 |
+
generate_button.click(
|
311 |
+
get_random_image,
|
312 |
+
inputs=[dataset_type],
|
313 |
+
outputs=random_image_output,
|
314 |
+
)
|
315 |
+
classify_button_random.click(
|
316 |
+
classify,
|
317 |
+
inputs=[random_image_output, dataset_type, arch_type, methods, training_ds],
|
318 |
+
outputs=output_label_random,
|
319 |
+
)
|
320 |
+
demo.launch(show_error=True)
|