from diffusers import ( StableDiffusionPipeline, StableDiffusionImg2ImgPipeline, DPMSolverMultistepScheduler, ) import gradio as gr import torch from PIL import Image import time import psutil import random from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker start_time = time.time() current_steps = 25 SAFETY_CHECKER = StableDiffusionSafetyChecker.from_pretrained("CompVis/stable-diffusion-safety-checker", torch_dtype=torch.float16) class Model: def __init__(self, name, path=""): self.name = name self.path = path if path != "": self.pipe_t2i = StableDiffusionPipeline.from_pretrained( path, torch_dtype=torch.float16, safety_checker=SAFETY_CHECKER ) self.pipe_t2i.scheduler = DPMSolverMultistepScheduler.from_config( self.pipe_t2i.scheduler.config ) self.pipe_i2i = StableDiffusionImg2ImgPipeline(**self.pipe_t2i.components, safety_checker=SAFETY_CHECKER) else: self.pipe_t2i = None self.pipe_i2i = None models = [ Model("2.2", "darkstorm2150/Protogen_v2.2_Official_Release"), Model("3.4", "darkstorm2150/Protogen_x3.4_Official_Release"), Model("5.3", "darkstorm2150/Protogen_v5.3_Official_Release"), Model("5.8", "darkstorm2150/Protogen_x5.8_Official_Release"), Model("Dragon", "darkstorm2150/Protogen_Dragon_Official_Release"), ] MODELS = {m.name: m for m in models} device = "GPU 🔥" if torch.cuda.is_available() else "CPU 🥶" def error_str(error, title="Error"): return ( f"""#### {title} {error}""" if error else "" ) def inference( model_name, prompt, guidance, steps, n_images=1, width=512, height=512, seed=0, img=None, strength=0.5, neg_prompt="", ): print(psutil.virtual_memory()) # print memory usage if seed == 0: seed = random.randint(0, 2147483647) generator = torch.Generator("cuda").manual_seed(seed) try: if img is not None: return ( img_to_img( model_name, prompt, n_images, neg_prompt, img, strength, guidance, steps, width, height, generator, seed, ), f"Done. Seed: {seed}", ) else: return ( txt_to_img( model_name, prompt, n_images, neg_prompt, guidance, steps, width, height, generator, seed, ), f"Done. Seed: {seed}", ) except Exception as e: return None, error_str(e) def txt_to_img( model_name, prompt, n_images, neg_prompt, guidance, steps, width, height, generator, seed, ): pipe = MODELS[model_name].pipe_t2i if torch.cuda.is_available(): pipe = pipe.to("cuda") pipe.enable_xformers_memory_efficient_attention() result = pipe( prompt, negative_prompt=neg_prompt, num_images_per_prompt=n_images, num_inference_steps=int(steps), guidance_scale=guidance, width=width, height=height, generator=generator, ) pipe.to("cpu") return replace_nsfw_images(result) def img_to_img( model_name, prompt, n_images, neg_prompt, img, strength, guidance, steps, width, height, generator, seed, ): pipe = MODELS[model_name].pipe_i2i if torch.cuda.is_available(): pipe = pipe.to("cuda") pipe.enable_xformers_memory_efficient_attention() ratio = min(height / img.height, width / img.width) img = img.resize((int(img.width * ratio), int(img.height * ratio)), Image.LANCZOS) result = pipe( prompt, negative_prompt=neg_prompt, num_images_per_prompt=n_images, image=img, num_inference_steps=int(steps), strength=strength, guidance_scale=guidance, generator=generator, ) pipe.to("cpu") return replace_nsfw_images(result) def replace_nsfw_images(results): for i in range(len(results.images)): if results.nsfw_content_detected[i]: results.images[i] = Image.open("nsfw.png") return results.images with gr.Blocks(css="style.css") as demo: gr.HTML( """
Demo for multiple fine-tuned Protogen Stable Diffusion models.
You can also duplicate this space and upgrade to gpu by going to settings:
Models by @darkstorm2150 and others. ❤️
This space uses the DPM-Solver++ sampler by Cheng Lu, et al..
Space by: Darkstorm (Victor Espinoza)
Instagram