Spaces:
Running
on
T4
Running
on
T4
Batched fit
Browse files- app.py +301 -4
- requirements.txt +7 -0
app.py
CHANGED
@@ -1,7 +1,304 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
|
|
2 |
|
3 |
-
def greet(name):
|
4 |
-
return "Hello " + name + "!!"
|
5 |
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import requests
|
2 |
+
import logging
|
3 |
+
import duckdb
|
4 |
+
from gradio_huggingfacehub_search import HuggingfaceHubSearch
|
5 |
+
from bertopic import BERTopic
|
6 |
+
import pandas as pd
|
7 |
import gradio as gr
|
8 |
+
from bertopic.representation import KeyBERTInspired
|
9 |
|
|
|
|
|
10 |
|
11 |
+
logging.basicConfig(
|
12 |
+
level=logging.INFO, format="%(asctime)s - %(name)s - %(levelname)s - %(message)s"
|
13 |
+
)
|
14 |
+
|
15 |
+
|
16 |
+
session = requests.Session()
|
17 |
+
|
18 |
+
|
19 |
+
def get_parquet_urls(dataset, config, split):
|
20 |
+
parquet_files = session.get(
|
21 |
+
f"https://datasets-server.huggingface.co/parquet?dataset={dataset}&config={config}&split={split}",
|
22 |
+
timeout=20,
|
23 |
+
).json()
|
24 |
+
if "error" in parquet_files:
|
25 |
+
raise Exception(f"Error fetching parquet files: {parquet_files['error']}")
|
26 |
+
parquet_urls = [file["url"] for file in parquet_files["parquet_files"]]
|
27 |
+
logging.info(f"Parquet files: {parquet_urls}")
|
28 |
+
return ",".join(f"'{url}'" for url in parquet_urls)
|
29 |
+
|
30 |
+
|
31 |
+
def get_docs_from_parquet(parquet_urls, column, offset, limit):
|
32 |
+
SQL_QUERY = f"SELECT {column} FROM read_parquet([{parquet_urls}]) LIMIT {limit} OFFSET {offset};"
|
33 |
+
df = duckdb.sql(SQL_QUERY).to_df()
|
34 |
+
logging.debug(f"Dataframe: {df.head(5)}")
|
35 |
+
return df[column].tolist()
|
36 |
+
|
37 |
+
|
38 |
+
def generate_topics(dataset, config, split, column, nested_column, progress):
|
39 |
+
logging.info(
|
40 |
+
f"Generating topics for {dataset} with config {config} {split} {column} {nested_column}"
|
41 |
+
)
|
42 |
+
|
43 |
+
parquet_urls = get_parquet_urls(dataset, config, split)
|
44 |
+
limit = 1_000
|
45 |
+
chunk_size = 300
|
46 |
+
offset = 0
|
47 |
+
representation_model = KeyBERTInspired()
|
48 |
+
|
49 |
+
docs = get_docs_from_parquet(parquet_urls, column, offset, chunk_size)
|
50 |
+
|
51 |
+
base_model = BERTopic(
|
52 |
+
representation_model=representation_model, min_topic_size=15
|
53 |
+
).fit(docs)
|
54 |
+
|
55 |
+
yield base_model.get_topic_info(), base_model.visualize_topics()
|
56 |
+
|
57 |
+
while True:
|
58 |
+
offset = offset + chunk_size
|
59 |
+
if not docs or offset >= limit:
|
60 |
+
break
|
61 |
+
|
62 |
+
docs = get_docs_from_parquet(parquet_urls, column, offset, chunk_size)
|
63 |
+
logging.info(f"------------> New chunk data {offset=} {chunk_size=}")
|
64 |
+
logging.info(docs[:5])
|
65 |
+
|
66 |
+
new_model = BERTopic(
|
67 |
+
"english", representation_model=representation_model, min_topic_size=15
|
68 |
+
).fit(docs)
|
69 |
+
updated_model = BERTopic.merge_models([base_model, new_model])
|
70 |
+
nr_new_topics = len(set(updated_model.topics_)) - len(set(base_model.topics_))
|
71 |
+
new_topics = list(updated_model.topic_labels_.values())[-nr_new_topics:]
|
72 |
+
logging.info("The following topics are newly found:")
|
73 |
+
logging.info(f"{new_topics}\n")
|
74 |
+
|
75 |
+
# Update the base model
|
76 |
+
base_model = updated_model
|
77 |
+
|
78 |
+
logging.info(base_model.get_topic_info())
|
79 |
+
yield base_model.get_topic_info(), base_model.visualize_topics()
|
80 |
+
|
81 |
+
return base_model.get_topic_info(), base_model.visualize_topics()
|
82 |
+
|
83 |
+
|
84 |
+
with gr.Blocks() as demo:
|
85 |
+
gr.Markdown(
|
86 |
+
"""
|
87 |
+
# 💠 Dataset Topic Discovery 🔭
|
88 |
+
## Select dataset and text column
|
89 |
+
"""
|
90 |
+
)
|
91 |
+
with gr.Row():
|
92 |
+
with gr.Column(scale=3):
|
93 |
+
dataset_name = HuggingfaceHubSearch(
|
94 |
+
label="Hub Dataset ID",
|
95 |
+
placeholder="Search for dataset id on Huggingface",
|
96 |
+
search_type="dataset",
|
97 |
+
)
|
98 |
+
subset_dropdown = gr.Dropdown(label="Subset", visible=False)
|
99 |
+
split_dropdown = gr.Dropdown(label="Split", visible=False)
|
100 |
+
|
101 |
+
with gr.Accordion("Dataset preview", open=False):
|
102 |
+
|
103 |
+
@gr.render(inputs=[dataset_name, subset_dropdown, split_dropdown])
|
104 |
+
def embed(name, subset, split):
|
105 |
+
html_code = f"""
|
106 |
+
<iframe
|
107 |
+
src="https://huggingface.co/datasets/{name}/embed/viewer/{subset}/{split}"
|
108 |
+
frameborder="0"
|
109 |
+
width="100%"
|
110 |
+
height="600px"
|
111 |
+
></iframe>
|
112 |
+
"""
|
113 |
+
return gr.HTML(value=html_code)
|
114 |
+
|
115 |
+
with gr.Row():
|
116 |
+
text_column_dropdown = gr.Dropdown(label="Text column name")
|
117 |
+
nested_text_column_dropdown = gr.Dropdown(
|
118 |
+
label="Nested text column name", visible=False
|
119 |
+
)
|
120 |
+
|
121 |
+
generate_button = gr.Button("Generate Notebook", variant="primary")
|
122 |
+
|
123 |
+
gr.Markdown("## Topics info")
|
124 |
+
progress = gr.Progress()
|
125 |
+
topics_df = gr.DataFrame(interactive=False, visible=True)
|
126 |
+
topics_plot = gr.Plot()
|
127 |
+
generate_button.click(
|
128 |
+
generate_topics,
|
129 |
+
inputs=[
|
130 |
+
dataset_name,
|
131 |
+
subset_dropdown,
|
132 |
+
split_dropdown,
|
133 |
+
text_column_dropdown,
|
134 |
+
nested_text_column_dropdown,
|
135 |
+
progress,
|
136 |
+
],
|
137 |
+
outputs=[topics_df, topics_plot],
|
138 |
+
)
|
139 |
+
|
140 |
+
# TODO: choose num_rows, random, or offset -> By default limit max to 1176 rows
|
141 |
+
# -> From the article, it could be in GPU 1176/sec
|
142 |
+
|
143 |
+
def _resolve_dataset_selection(
|
144 |
+
dataset: str, default_subset: str, default_split: str, text_feature
|
145 |
+
):
|
146 |
+
if "/" not in dataset.strip().strip("/"):
|
147 |
+
return {
|
148 |
+
subset_dropdown: gr.Dropdown(visible=False),
|
149 |
+
split_dropdown: gr.Dropdown(visible=False),
|
150 |
+
text_column_dropdown: gr.Dropdown(label="Text column name"),
|
151 |
+
nested_text_column_dropdown: gr.Dropdown(visible=False),
|
152 |
+
}
|
153 |
+
info_resp = session.get(
|
154 |
+
f"https://datasets-server.huggingface.co/info?dataset={dataset}", timeout=20
|
155 |
+
).json()
|
156 |
+
if "error" in info_resp:
|
157 |
+
return {
|
158 |
+
subset_dropdown: gr.Dropdown(visible=False),
|
159 |
+
split_dropdown: gr.Dropdown(visible=False),
|
160 |
+
text_column_dropdown: gr.Dropdown(label="Text column name"),
|
161 |
+
nested_text_column_dropdown: gr.Dropdown(visible=False),
|
162 |
+
}
|
163 |
+
subsets: list[str] = list(info_resp["dataset_info"])
|
164 |
+
subset = default_subset if default_subset in subsets else subsets[0]
|
165 |
+
splits: list[str] = list(info_resp["dataset_info"][subset]["splits"])
|
166 |
+
split = default_split if default_split in splits else splits[0]
|
167 |
+
features = info_resp["dataset_info"][subset]["features"]
|
168 |
+
|
169 |
+
def _is_string_feature(feature):
|
170 |
+
return isinstance(feature, dict) and feature.get("dtype") == "string"
|
171 |
+
|
172 |
+
text_features = [
|
173 |
+
feature_name
|
174 |
+
for feature_name, feature in features.items()
|
175 |
+
if _is_string_feature(feature)
|
176 |
+
]
|
177 |
+
nested_features = [
|
178 |
+
feature_name
|
179 |
+
for feature_name, feature in features.items()
|
180 |
+
if isinstance(feature, dict)
|
181 |
+
and isinstance(next(iter(feature.values())), dict)
|
182 |
+
]
|
183 |
+
nested_text_features = [
|
184 |
+
feature_name
|
185 |
+
for feature_name in nested_features
|
186 |
+
if any(
|
187 |
+
_is_string_feature(nested_feature)
|
188 |
+
for nested_feature in features[feature_name].values()
|
189 |
+
)
|
190 |
+
]
|
191 |
+
if not text_feature:
|
192 |
+
return {
|
193 |
+
subset_dropdown: gr.Dropdown(
|
194 |
+
value=subset, choices=subsets, visible=len(subsets) > 1
|
195 |
+
),
|
196 |
+
split_dropdown: gr.Dropdown(
|
197 |
+
value=split, choices=splits, visible=len(splits) > 1
|
198 |
+
),
|
199 |
+
text_column_dropdown: gr.Dropdown(
|
200 |
+
choices=text_features + nested_text_features,
|
201 |
+
label="Text column name",
|
202 |
+
),
|
203 |
+
nested_text_column_dropdown: gr.Dropdown(visible=False),
|
204 |
+
}
|
205 |
+
if text_feature in nested_text_features:
|
206 |
+
nested_keys = [
|
207 |
+
feature_name
|
208 |
+
for feature_name, feature in features[text_feature].items()
|
209 |
+
if _is_string_feature(feature)
|
210 |
+
]
|
211 |
+
return {
|
212 |
+
subset_dropdown: gr.Dropdown(
|
213 |
+
value=subset, choices=subsets, visible=len(subsets) > 1
|
214 |
+
),
|
215 |
+
split_dropdown: gr.Dropdown(
|
216 |
+
value=split, choices=splits, visible=len(splits) > 1
|
217 |
+
),
|
218 |
+
text_column_dropdown: gr.Dropdown(
|
219 |
+
choices=text_features + nested_text_features,
|
220 |
+
label="Text column name",
|
221 |
+
),
|
222 |
+
nested_text_column_dropdown: gr.Dropdown(
|
223 |
+
value=nested_keys[0],
|
224 |
+
choices=nested_keys,
|
225 |
+
label="Nested text column name",
|
226 |
+
visible=True,
|
227 |
+
),
|
228 |
+
}
|
229 |
+
return {
|
230 |
+
subset_dropdown: gr.Dropdown(
|
231 |
+
value=subset, choices=subsets, visible=len(subsets) > 1
|
232 |
+
),
|
233 |
+
split_dropdown: gr.Dropdown(
|
234 |
+
value=split, choices=splits, visible=len(splits) > 1
|
235 |
+
),
|
236 |
+
text_column_dropdown: gr.Dropdown(
|
237 |
+
choices=text_features + nested_text_features, label="Text column name"
|
238 |
+
),
|
239 |
+
nested_text_column_dropdown: gr.Dropdown(visible=False),
|
240 |
+
}
|
241 |
+
|
242 |
+
@dataset_name.change(
|
243 |
+
inputs=[dataset_name],
|
244 |
+
outputs=[
|
245 |
+
subset_dropdown,
|
246 |
+
split_dropdown,
|
247 |
+
text_column_dropdown,
|
248 |
+
nested_text_column_dropdown,
|
249 |
+
],
|
250 |
+
)
|
251 |
+
def show_input_from_subset_dropdown(dataset: str) -> dict:
|
252 |
+
return _resolve_dataset_selection(
|
253 |
+
dataset, default_subset="default", default_split="train", text_feature=None
|
254 |
+
)
|
255 |
+
|
256 |
+
@subset_dropdown.change(
|
257 |
+
inputs=[dataset_name, subset_dropdown],
|
258 |
+
outputs=[
|
259 |
+
subset_dropdown,
|
260 |
+
split_dropdown,
|
261 |
+
text_column_dropdown,
|
262 |
+
nested_text_column_dropdown,
|
263 |
+
],
|
264 |
+
)
|
265 |
+
def show_input_from_subset_dropdown(dataset: str, subset: str) -> dict:
|
266 |
+
return _resolve_dataset_selection(
|
267 |
+
dataset, default_subset=subset, default_split="train", text_feature=None
|
268 |
+
)
|
269 |
+
|
270 |
+
@split_dropdown.change(
|
271 |
+
inputs=[dataset_name, subset_dropdown, split_dropdown],
|
272 |
+
outputs=[
|
273 |
+
subset_dropdown,
|
274 |
+
split_dropdown,
|
275 |
+
text_column_dropdown,
|
276 |
+
nested_text_column_dropdown,
|
277 |
+
],
|
278 |
+
)
|
279 |
+
def show_input_from_split_dropdown(dataset: str, subset: str, split: str) -> dict:
|
280 |
+
return _resolve_dataset_selection(
|
281 |
+
dataset, default_subset=subset, default_split=split, text_feature=None
|
282 |
+
)
|
283 |
+
|
284 |
+
@text_column_dropdown.change(
|
285 |
+
inputs=[dataset_name, subset_dropdown, split_dropdown, text_column_dropdown],
|
286 |
+
outputs=[
|
287 |
+
subset_dropdown,
|
288 |
+
split_dropdown,
|
289 |
+
text_column_dropdown,
|
290 |
+
nested_text_column_dropdown,
|
291 |
+
],
|
292 |
+
)
|
293 |
+
def show_input_from_text_column_dropdown(
|
294 |
+
dataset: str, subset: str, split: str, text_column
|
295 |
+
) -> dict:
|
296 |
+
return _resolve_dataset_selection(
|
297 |
+
dataset,
|
298 |
+
default_subset=subset,
|
299 |
+
default_split=split,
|
300 |
+
text_feature=text_column,
|
301 |
+
)
|
302 |
+
|
303 |
+
|
304 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio_huggingfacehub_search==0.0.7
|
2 |
+
duckdb
|
3 |
+
umap-learn
|
4 |
+
sentence-transformers
|
5 |
+
datamapplot
|
6 |
+
bertopic
|
7 |
+
pandas
|