Spaces:
Sleeping
Sleeping
Progress bar by task
Browse files
app.py
CHANGED
@@ -178,9 +178,9 @@ def generate_topics(dataset, config, split, column, plot_type):
|
|
178 |
topics_info, topic_plot = None, None
|
179 |
full_processing = split_rows <= MAX_ROWS
|
180 |
message = (
|
181 |
-
f"
|
182 |
if full_processing
|
183 |
-
else f"
|
184 |
)
|
185 |
sub_title = (
|
186 |
f"Data map for the entire dataset ({limit} rows) using the column '{column}'"
|
@@ -191,48 +191,140 @@ def generate_topics(dataset, config, split, column, plot_type):
|
|
191 |
gr.Accordion(open=False),
|
192 |
gr.DataFrame(value=[], interactive=False, visible=True),
|
193 |
gr.Plot(value=None, visible=True),
|
194 |
-
gr.Label({message:
|
195 |
"",
|
196 |
)
|
197 |
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
|
|
202 |
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
|
207 |
-
|
208 |
-
|
209 |
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
214 |
)
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
|
|
|
|
|
|
219 |
)
|
220 |
-
new_topics = list(updated_model.topic_labels_.values())[-nr_new_topics:]
|
221 |
-
logging.info(f"The following topics are newly found: {new_topics}")
|
222 |
-
base_model = updated_model
|
223 |
|
224 |
-
|
225 |
-
|
|
|
|
|
|
|
|
|
|
|
226 |
|
227 |
-
|
228 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
229 |
|
230 |
-
topics_info = base_model.get_topic_info()
|
231 |
all_topics = base_model.topics_
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
232 |
topic_plot = (
|
233 |
base_model.visualize_document_datamap(
|
234 |
docs=all_docs,
|
235 |
topics=all_topics,
|
|
|
236 |
reduced_embeddings=reduced_embeddings_array,
|
237 |
title="",
|
238 |
sub_title=sub_title,
|
@@ -258,137 +350,87 @@ def generate_topics(dataset, config, split, column, plot_type):
|
|
258 |
title="",
|
259 |
)
|
260 |
)
|
261 |
-
|
262 |
-
|
263 |
-
logging.info(f"Progress: {progress} % - {rows_processed} of {limit}")
|
264 |
-
message = (
|
265 |
-
f"⚙️ Processing full dataset: {rows_processed} of {limit}"
|
266 |
-
if full_processing
|
267 |
-
else f"⚙️ Processing partial dataset: {rows_processed} of {limit} rows"
|
268 |
-
)
|
269 |
-
|
270 |
yield (
|
271 |
gr.Accordion(open=False),
|
272 |
topics_info,
|
273 |
topic_plot,
|
274 |
-
gr.Label(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
275 |
"",
|
276 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
277 |
|
278 |
-
|
279 |
-
del docs, embeddings, new_model, reduced_embeddings
|
280 |
-
logging.info("Finished processing all data")
|
281 |
-
|
282 |
-
dataset_clear_name = dataset.replace("/", "-")
|
283 |
-
plot_png = f"{dataset_clear_name}-{plot_type.lower()}.png"
|
284 |
-
if plot_type == "DataMapPlot":
|
285 |
-
topic_plot.savefig(plot_png, format="png", dpi=300)
|
286 |
-
else:
|
287 |
-
topic_plot.write_image(plot_png)
|
288 |
-
|
289 |
-
all_topics = base_model.topics_
|
290 |
-
topic_info = base_model.get_topic_info()
|
291 |
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
296 |
)
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
base_model.set_topic_labels(new_topics_by_text_generation)
|
305 |
-
|
306 |
-
topics_info = base_model.get_topic_info()
|
307 |
-
|
308 |
-
topic_plot = (
|
309 |
-
base_model.visualize_document_datamap(
|
310 |
-
docs=all_docs,
|
311 |
-
topics=all_topics,
|
312 |
-
custom_labels=True,
|
313 |
-
reduced_embeddings=reduced_embeddings_array,
|
314 |
-
title="",
|
315 |
-
sub_title=sub_title,
|
316 |
-
width=800,
|
317 |
-
height=700,
|
318 |
-
arrowprops={
|
319 |
-
"arrowstyle": "wedge,tail_width=0.5",
|
320 |
-
"connectionstyle": "arc3,rad=0.05",
|
321 |
-
"linewidth": 0,
|
322 |
-
"fc": "#33333377",
|
323 |
-
},
|
324 |
-
dynamic_label_size=True,
|
325 |
-
# label_wrap_width=12,
|
326 |
-
label_over_points=True,
|
327 |
-
max_font_size=36,
|
328 |
-
min_font_size=4,
|
329 |
)
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
|
|
|
|
336 |
)
|
337 |
-
)
|
338 |
-
custom_labels = base_model.custom_labels_
|
339 |
-
topic_names_array = [custom_labels[doc_topic + 1] for doc_topic in all_topics]
|
340 |
-
|
341 |
-
interactive_plot = datamapplot.create_interactive_plot(
|
342 |
-
reduced_embeddings_array,
|
343 |
-
topic_names_array,
|
344 |
-
hover_text=all_docs,
|
345 |
-
title=dataset,
|
346 |
-
sub_title=sub_title.replace(
|
347 |
-
"dataset",
|
348 |
-
f"<a href='https://huggingface.co/datasets/{dataset}/viewer/{config}/{split}' target='_blank'>dataset</a>",
|
349 |
-
),
|
350 |
-
enable_search=True,
|
351 |
-
# TODO: Export data to .arrow and also serve it
|
352 |
-
inline_data=True,
|
353 |
-
# offline_data_prefix=dataset_clear_name,
|
354 |
-
initial_zoom_fraction=0.8,
|
355 |
-
)
|
356 |
-
html_content = str(interactive_plot)
|
357 |
-
html_file_path = f"{dataset_clear_name}.html"
|
358 |
-
with open(html_file_path, "w", encoding="utf-8") as html_file:
|
359 |
-
html_file.write(html_content)
|
360 |
-
|
361 |
-
repo_id = f"{DATASETS_TOPICS_ORGANIZATION}/{dataset_clear_name}"
|
362 |
-
|
363 |
-
space_id = create_space_with_content(
|
364 |
-
api=api,
|
365 |
-
repo_id=repo_id,
|
366 |
-
dataset_id=dataset,
|
367 |
-
html_file_path=html_file_path,
|
368 |
-
plot_file_path=plot_png,
|
369 |
-
space_card=SPACE_REPO_CARD_CONTENT,
|
370 |
-
token=HF_TOKEN,
|
371 |
-
)
|
372 |
-
|
373 |
-
space_link = f"https://huggingface.co/spaces/{space_id}"
|
374 |
-
yield (
|
375 |
-
gr.Accordion(open=False),
|
376 |
-
topics_info,
|
377 |
-
topic_plot,
|
378 |
-
gr.Label(
|
379 |
-
{f"✅ Done: {rows_processed} rows have been processed": 1.0}, visible=True
|
380 |
-
),
|
381 |
-
f"[![Go to interactive plot](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Space-blue)]({space_link})",
|
382 |
-
)
|
383 |
-
del reduce_umap_model, all_docs, reduced_embeddings_list
|
384 |
-
del (
|
385 |
-
base_model,
|
386 |
-
all_topics,
|
387 |
-
topic_info,
|
388 |
-
topic_names_array,
|
389 |
-
interactive_plot,
|
390 |
-
)
|
391 |
-
cuda.empty_cache()
|
392 |
|
393 |
|
394 |
with gr.Blocks() as demo:
|
@@ -437,11 +479,11 @@ with gr.Blocks() as demo:
|
|
437 |
generate_button = gr.Button("Generate Topics", variant="primary")
|
438 |
|
439 |
gr.Markdown("## Data map")
|
440 |
-
|
441 |
open_space_label = gr.Markdown()
|
442 |
topics_plot = gr.Plot()
|
443 |
-
with gr.Accordion("Topics Info", open=False):
|
444 |
-
|
445 |
gr.HTML(
|
446 |
f"<p style='text-align: center; color:orange;'>⚠ This space processes datasets in batches of <b>{CHUNK_SIZE}</b>, with a maximum of <b>{MAX_ROWS}</b> rows. If you need further assistance, please open a new issue in the Community tab.</p>"
|
447 |
)
|
@@ -463,7 +505,7 @@ with gr.Blocks() as demo:
|
|
463 |
data_details_accordion,
|
464 |
topics_df,
|
465 |
topics_plot,
|
466 |
-
|
467 |
open_space_label,
|
468 |
],
|
469 |
)
|
|
|
178 |
topics_info, topic_plot = None, None
|
179 |
full_processing = split_rows <= MAX_ROWS
|
180 |
message = (
|
181 |
+
f"Processing topics for full dataset: 0 of ({split_rows} rows)"
|
182 |
if full_processing
|
183 |
+
else f"Processing topics for partial dataset 0 of ({limit} rows)"
|
184 |
)
|
185 |
sub_title = (
|
186 |
f"Data map for the entire dataset ({limit} rows) using the column '{column}'"
|
|
|
191 |
gr.Accordion(open=False),
|
192 |
gr.DataFrame(value=[], interactive=False, visible=True),
|
193 |
gr.Plot(value=None, visible=True),
|
194 |
+
gr.Label({"⏳ " + message: 0.0}, visible=True),
|
195 |
"",
|
196 |
)
|
197 |
|
198 |
+
try:
|
199 |
+
while offset < limit:
|
200 |
+
docs = get_docs_from_parquet(parquet_urls, column, offset, CHUNK_SIZE)
|
201 |
+
if not docs:
|
202 |
+
break
|
203 |
|
204 |
+
logging.info(
|
205 |
+
f"----> Processing chunk: {offset=} {CHUNK_SIZE=} with {len(docs)} docs"
|
206 |
+
)
|
207 |
|
208 |
+
embeddings = calculate_embeddings(docs)
|
209 |
+
new_model = fit_model(docs, embeddings, n_neighbors, n_components)
|
210 |
|
211 |
+
if base_model is None:
|
212 |
+
base_model = new_model
|
213 |
+
logging.info(
|
214 |
+
f"The following topics are newly found: {base_model.topic_labels_}"
|
215 |
+
)
|
216 |
+
else:
|
217 |
+
updated_model = BERTopic.merge_models([base_model, new_model])
|
218 |
+
nr_new_topics = len(set(updated_model.topics_)) - len(
|
219 |
+
set(base_model.topics_)
|
220 |
+
)
|
221 |
+
new_topics = list(updated_model.topic_labels_.values())[-nr_new_topics:]
|
222 |
+
logging.info(f"The following topics are newly found: {new_topics}")
|
223 |
+
base_model = updated_model
|
224 |
+
|
225 |
+
reduced_embeddings = reduce_umap_model.fit_transform(embeddings)
|
226 |
+
reduced_embeddings_list.append(reduced_embeddings)
|
227 |
+
|
228 |
+
all_docs.extend(docs)
|
229 |
+
reduced_embeddings_array = np.vstack(reduced_embeddings_list)
|
230 |
+
|
231 |
+
topics_info = base_model.get_topic_info()
|
232 |
+
all_topics = base_model.topics_
|
233 |
+
topic_plot = (
|
234 |
+
base_model.visualize_document_datamap(
|
235 |
+
docs=all_docs,
|
236 |
+
topics=all_topics,
|
237 |
+
reduced_embeddings=reduced_embeddings_array,
|
238 |
+
title="",
|
239 |
+
sub_title=sub_title,
|
240 |
+
width=800,
|
241 |
+
height=700,
|
242 |
+
arrowprops={
|
243 |
+
"arrowstyle": "wedge,tail_width=0.5",
|
244 |
+
"connectionstyle": "arc3,rad=0.05",
|
245 |
+
"linewidth": 0,
|
246 |
+
"fc": "#33333377",
|
247 |
+
},
|
248 |
+
dynamic_label_size=True,
|
249 |
+
# label_wrap_width=12,
|
250 |
+
label_over_points=True,
|
251 |
+
max_font_size=36,
|
252 |
+
min_font_size=4,
|
253 |
+
)
|
254 |
+
if plot_type == "DataMapPlot"
|
255 |
+
else base_model.visualize_documents(
|
256 |
+
docs=all_docs,
|
257 |
+
reduced_embeddings=reduced_embeddings_array,
|
258 |
+
custom_labels=True,
|
259 |
+
title="",
|
260 |
+
)
|
261 |
)
|
262 |
+
rows_processed += len(docs)
|
263 |
+
progress = min(rows_processed / limit, 1.0)
|
264 |
+
logging.info(f"Progress: {progress} % - {rows_processed} of {limit}")
|
265 |
+
message = (
|
266 |
+
f"Processing topics for full dataset: {rows_processed} of {limit}"
|
267 |
+
if full_processing
|
268 |
+
else f"Processing topics for partial dataset: {rows_processed} of {limit} rows"
|
269 |
)
|
|
|
|
|
|
|
270 |
|
271 |
+
yield (
|
272 |
+
gr.Accordion(open=False),
|
273 |
+
topics_info,
|
274 |
+
topic_plot,
|
275 |
+
gr.Label({"⏳ " + message: progress}, visible=True),
|
276 |
+
"",
|
277 |
+
)
|
278 |
|
279 |
+
offset += CHUNK_SIZE
|
280 |
+
del docs, embeddings, new_model, reduced_embeddings
|
281 |
+
logging.info("Finished processing topic modeling data")
|
282 |
+
|
283 |
+
yield (
|
284 |
+
gr.Accordion(open=False),
|
285 |
+
topics_info,
|
286 |
+
topic_plot,
|
287 |
+
gr.Label(
|
288 |
+
{
|
289 |
+
"✅ " + message: 1.0,
|
290 |
+
f"⏳ Generating topic names with {model_id}": 0.0,
|
291 |
+
},
|
292 |
+
visible=True,
|
293 |
+
),
|
294 |
+
"",
|
295 |
+
)
|
296 |
+
|
297 |
+
dataset_clear_name = dataset.replace("/", "-")
|
298 |
+
plot_png = f"{dataset_clear_name}-{plot_type.lower()}.png"
|
299 |
+
if plot_type == "DataMapPlot":
|
300 |
+
topic_plot.savefig(plot_png, format="png", dpi=300)
|
301 |
+
else:
|
302 |
+
topic_plot.write_image(plot_png)
|
303 |
|
|
|
304 |
all_topics = base_model.topics_
|
305 |
+
topics_info = base_model.get_topic_info()
|
306 |
+
|
307 |
+
new_topics_by_text_generation = {}
|
308 |
+
for _, row in topics_info.iterrows():
|
309 |
+
logging.info(
|
310 |
+
f"Processing topic: {row['Topic']} - Representation: {row['Representation']}"
|
311 |
+
)
|
312 |
+
prompt = f"{REPRESENTATION_PROMPT.replace('[KEYWORDS]', ','.join(row['Representation']))}"
|
313 |
+
logging.info(prompt)
|
314 |
+
topic_description = generator(prompt)
|
315 |
+
logging.info(topic_description)
|
316 |
+
new_topics_by_text_generation[row["Topic"]] = topic_description[0][
|
317 |
+
"generated_text"
|
318 |
+
].replace(prompt, "")
|
319 |
+
base_model.set_topic_labels(new_topics_by_text_generation)
|
320 |
+
|
321 |
+
topics_info = base_model.get_topic_info()
|
322 |
+
|
323 |
topic_plot = (
|
324 |
base_model.visualize_document_datamap(
|
325 |
docs=all_docs,
|
326 |
topics=all_topics,
|
327 |
+
custom_labels=True,
|
328 |
reduced_embeddings=reduced_embeddings_array,
|
329 |
title="",
|
330 |
sub_title=sub_title,
|
|
|
350 |
title="",
|
351 |
)
|
352 |
)
|
353 |
+
custom_labels = base_model.custom_labels_
|
354 |
+
topic_names_array = [custom_labels[doc_topic + 1] for doc_topic in all_topics]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
355 |
yield (
|
356 |
gr.Accordion(open=False),
|
357 |
topics_info,
|
358 |
topic_plot,
|
359 |
+
gr.Label(
|
360 |
+
{
|
361 |
+
"✅ " + message: 1.0,
|
362 |
+
f"✅ Generating topic names with {model_id}": 1.0,
|
363 |
+
"⏳ Creating Interactive Space": 0.0,
|
364 |
+
},
|
365 |
+
visible=True,
|
366 |
+
),
|
367 |
"",
|
368 |
)
|
369 |
+
interactive_plot = datamapplot.create_interactive_plot(
|
370 |
+
reduced_embeddings_array,
|
371 |
+
topic_names_array,
|
372 |
+
hover_text=all_docs,
|
373 |
+
title=dataset,
|
374 |
+
sub_title=sub_title.replace(
|
375 |
+
"dataset",
|
376 |
+
f"<a href='https://huggingface.co/datasets/{dataset}/viewer/{config}/{split}' target='_blank'>dataset</a>",
|
377 |
+
),
|
378 |
+
enable_search=True,
|
379 |
+
# TODO: Export data to .arrow and also serve it
|
380 |
+
inline_data=True,
|
381 |
+
# offline_data_prefix=dataset_clear_name,
|
382 |
+
initial_zoom_fraction=0.8,
|
383 |
+
)
|
384 |
+
html_content = str(interactive_plot)
|
385 |
+
html_file_path = f"{dataset_clear_name}.html"
|
386 |
+
with open(html_file_path, "w", encoding="utf-8") as html_file:
|
387 |
+
html_file.write(html_content)
|
388 |
+
|
389 |
+
repo_id = f"{DATASETS_TOPICS_ORGANIZATION}/{dataset_clear_name}"
|
390 |
+
|
391 |
+
space_id = create_space_with_content(
|
392 |
+
api=api,
|
393 |
+
repo_id=repo_id,
|
394 |
+
dataset_id=dataset,
|
395 |
+
html_file_path=html_file_path,
|
396 |
+
plot_file_path=plot_png,
|
397 |
+
space_card=SPACE_REPO_CARD_CONTENT,
|
398 |
+
token=HF_TOKEN,
|
399 |
+
)
|
400 |
|
401 |
+
space_link = f"https://huggingface.co/spaces/{space_id}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
402 |
|
403 |
+
yield (
|
404 |
+
gr.Accordion(open=False),
|
405 |
+
topics_info,
|
406 |
+
topic_plot,
|
407 |
+
gr.Label(
|
408 |
+
{
|
409 |
+
"✅ " + message: 1.0,
|
410 |
+
f"✅ Generating topic names with {model_id}": 1.0,
|
411 |
+
"✅ Creating Interactive Space": 1.0,
|
412 |
+
},
|
413 |
+
visible=True,
|
414 |
+
),
|
415 |
+
f"[![Go to interactive plot](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Space-blue)]({space_link})",
|
416 |
)
|
417 |
+
del reduce_umap_model, all_docs, reduced_embeddings_list
|
418 |
+
del (
|
419 |
+
base_model,
|
420 |
+
all_topics,
|
421 |
+
topic_info,
|
422 |
+
topic_names_array,
|
423 |
+
interactive_plot,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
424 |
)
|
425 |
+
cuda.empty_cache()
|
426 |
+
except Exception as error:
|
427 |
+
return (
|
428 |
+
gr.Accordion(open=True),
|
429 |
+
gr.DataFrame(value=[], interactive=False, visible=True),
|
430 |
+
gr.Plot(value=None, visible=True),
|
431 |
+
gr.Label({f"❌ Error: {error}": 0.0}, visible=True),
|
432 |
+
"",
|
433 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
434 |
|
435 |
|
436 |
with gr.Blocks() as demo:
|
|
|
479 |
generate_button = gr.Button("Generate Topics", variant="primary")
|
480 |
|
481 |
gr.Markdown("## Data map")
|
482 |
+
progress_label = gr.Label(visible=False, show_label=False)
|
483 |
open_space_label = gr.Markdown()
|
484 |
topics_plot = gr.Plot()
|
485 |
+
# with gr.Accordion("Topics Info", open=False):
|
486 |
+
topics_df = gr.DataFrame(interactive=False, visible=True)
|
487 |
gr.HTML(
|
488 |
f"<p style='text-align: center; color:orange;'>⚠ This space processes datasets in batches of <b>{CHUNK_SIZE}</b>, with a maximum of <b>{MAX_ROWS}</b> rows. If you need further assistance, please open a new issue in the Community tab.</p>"
|
489 |
)
|
|
|
505 |
data_details_accordion,
|
506 |
topics_df,
|
507 |
topics_plot,
|
508 |
+
progress_label,
|
509 |
open_space_label,
|
510 |
],
|
511 |
)
|