Spaces:
Sleeping
Sleeping
Adding viz for merged model
Browse files- app.py +24 -47
- requirements.txt +2 -1
app.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
import spaces
|
2 |
import requests
|
3 |
import logging
|
4 |
import duckdb
|
@@ -8,6 +8,7 @@ import pandas as pd
|
|
8 |
import gradio as gr
|
9 |
from bertopic.representation import KeyBERTInspired
|
10 |
from umap import UMAP
|
|
|
11 |
|
12 |
# from cuml.cluster import HDBSCAN
|
13 |
# from cuml.manifold import UMAP
|
@@ -41,14 +42,14 @@ def get_docs_from_parquet(parquet_urls, column, offset, limit):
|
|
41 |
return df[column].tolist()
|
42 |
|
43 |
|
44 |
-
@spaces.GPU
|
45 |
def calculate_embeddings(docs):
|
46 |
embeddings = sentence_model.encode(docs, show_progress_bar=True, batch_size=100)
|
47 |
logging.info(f"Embeddings shape: {embeddings.shape}")
|
48 |
return embeddings
|
49 |
|
50 |
|
51 |
-
@spaces.GPU
|
52 |
def fit_model(base_model, sentence_model, representation_model, docs, embeddings):
|
53 |
new_model = BERTopic(
|
54 |
"english",
|
@@ -81,59 +82,35 @@ def generate_topics(dataset, config, split, column, nested_column):
|
|
81 |
offset = 0
|
82 |
representation_model = KeyBERTInspired()
|
83 |
base_model = None
|
84 |
-
|
85 |
-
|
86 |
-
# base_model = BERTopic(
|
87 |
-
# "english", representation_model=representation_model, min_topic_size=15
|
88 |
-
# )
|
89 |
-
# base_model.fit_transform(docs)
|
90 |
-
|
91 |
-
# yield base_model.get_topic_info(), base_model.visualize_topics()
|
92 |
-
# Create instances of GPU-accelerated UMAP and HDBSCAN
|
93 |
-
# umap_model = UMAP(n_components=5, n_neighbors=15, min_dist=0.0)
|
94 |
-
# hdbscan_model = HDBSCAN(min_samples=10, gen_min_span_tree=True)
|
95 |
while True:
|
96 |
docs = get_docs_from_parquet(parquet_urls, column, offset, chunk_size)
|
97 |
-
logging.info(
|
|
|
|
|
98 |
embeddings = calculate_embeddings(docs)
|
99 |
offset = offset + chunk_size
|
100 |
if not docs or offset >= limit:
|
101 |
break
|
102 |
-
|
103 |
-
# new_model = BERTopic(
|
104 |
-
# "english",
|
105 |
-
# embedding_model=sentence_model,
|
106 |
-
# representation_model=representation_model,
|
107 |
-
# min_topic_size=15, # umap_model=umap_model, hdbscan_model=hdbscan_model
|
108 |
-
# )
|
109 |
-
# logging.info("Fitting new model")
|
110 |
-
# new_model.fit(docs, embeddings)
|
111 |
-
# logging.info("End fitting new model")
|
112 |
-
# if base_model is not None:
|
113 |
-
# updated_model = BERTopic.merge_models([base_model, new_model])
|
114 |
-
# nr_new_topics = len(set(updated_model.topics_)) - len(
|
115 |
-
# set(base_model.topics_)
|
116 |
-
# )
|
117 |
-
# new_topics = list(updated_model.topic_labels_.values())[-nr_new_topics:]
|
118 |
-
# logging.info("The following topics are newly found:")
|
119 |
-
# logging.info(f"{new_topics}\n")
|
120 |
-
# base_model = updated_model
|
121 |
-
# else:
|
122 |
-
# base_model = new_model
|
123 |
-
# logging.info(base_model.get_topic_info())
|
124 |
-
base_model, new_model = fit_model(
|
125 |
base_model, sentence_model, representation_model, docs, embeddings
|
126 |
)
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
|
|
|
|
136 |
)
|
|
|
|
|
|
|
137 |
logging.info("Finished processing all data")
|
138 |
return base_model.get_topic_info(), base_model.visualize_topics()
|
139 |
|
|
|
1 |
+
# import spaces
|
2 |
import requests
|
3 |
import logging
|
4 |
import duckdb
|
|
|
8 |
import gradio as gr
|
9 |
from bertopic.representation import KeyBERTInspired
|
10 |
from umap import UMAP
|
11 |
+
import numpy as np
|
12 |
|
13 |
# from cuml.cluster import HDBSCAN
|
14 |
# from cuml.manifold import UMAP
|
|
|
42 |
return df[column].tolist()
|
43 |
|
44 |
|
45 |
+
# @spaces.GPU
|
46 |
def calculate_embeddings(docs):
|
47 |
embeddings = sentence_model.encode(docs, show_progress_bar=True, batch_size=100)
|
48 |
logging.info(f"Embeddings shape: {embeddings.shape}")
|
49 |
return embeddings
|
50 |
|
51 |
|
52 |
+
# @spaces.GPU
|
53 |
def fit_model(base_model, sentence_model, representation_model, docs, embeddings):
|
54 |
new_model = BERTopic(
|
55 |
"english",
|
|
|
82 |
offset = 0
|
83 |
representation_model = KeyBERTInspired()
|
84 |
base_model = None
|
85 |
+
all_docs = []
|
86 |
+
all_reduced_embeddings = np.empty((0, 2))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
while True:
|
88 |
docs = get_docs_from_parquet(parquet_urls, column, offset, chunk_size)
|
89 |
+
logging.info(
|
90 |
+
f"------------> New chunk data {offset=} {chunk_size=} with {len(docs)} docs"
|
91 |
+
)
|
92 |
embeddings = calculate_embeddings(docs)
|
93 |
offset = offset + chunk_size
|
94 |
if not docs or offset >= limit:
|
95 |
break
|
96 |
+
base_model, _ = fit_model(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
base_model, sentence_model, representation_model, docs, embeddings
|
98 |
)
|
99 |
+
reduced_embeddings = UMAP(
|
100 |
+
n_neighbors=10, n_components=2, min_dist=0.0, metric="cosine"
|
101 |
+
).fit_transform(embeddings)
|
102 |
+
logging.info(f"Reduced embeddings shape: {reduced_embeddings.shape}")
|
103 |
+
|
104 |
+
all_docs.extend(docs)
|
105 |
+
all_reduced_embeddings = np.vstack((all_reduced_embeddings, reduced_embeddings))
|
106 |
+
logging.info(f"Stacked embeddings shape: {all_reduced_embeddings.shape}")
|
107 |
+
topics_info = base_model.get_topic_info()
|
108 |
+
topic_plot = base_model.visualize_documents(
|
109 |
+
all_docs, reduced_embeddings=all_reduced_embeddings
|
110 |
)
|
111 |
+
|
112 |
+
yield topics_info, topic_plot
|
113 |
+
|
114 |
logging.info("Finished processing all data")
|
115 |
return base_model.get_topic_info(), base_model.visualize_topics()
|
116 |
|
requirements.txt
CHANGED
@@ -7,4 +7,5 @@ sentence-transformers
|
|
7 |
datamapplot
|
8 |
bertopic
|
9 |
pandas
|
10 |
-
torch
|
|
|
|
7 |
datamapplot
|
8 |
bertopic
|
9 |
pandas
|
10 |
+
torch
|
11 |
+
numpy
|