doevent's picture
Update app.py
a18bf31
raw
history blame
4.14 kB
import cv2
import gradio as gr
import numpy as np
import onnxruntime
import requests
from huggingface_hub import hf_hub_download
from PIL import Image
# Get x_scale_factor & y_scale_factor to resize image
def get_scale_factor(im_h, im_w, ref_size=512):
if max(im_h, im_w) < ref_size or min(im_h, im_w) > ref_size:
if im_w >= im_h:
im_rh = ref_size
im_rw = int(im_w / im_h * ref_size)
elif im_w < im_h:
im_rw = ref_size
im_rh = int(im_h / im_w * ref_size)
else:
im_rh = im_h
im_rw = im_w
im_rw = im_rw - im_rw % 32
im_rh = im_rh - im_rh % 32
x_scale_factor = im_rw / im_w
y_scale_factor = im_rh / im_h
return x_scale_factor, y_scale_factor
MODEL_PATH = hf_hub_download('nateraw/background-remover-files', 'modnet.onnx', repo_type='dataset')
def main(image_path, threshold):
# read image
im = cv2.imread(image_path)
im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB)
# unify image channels to 3
if len(im.shape) == 2:
im = im[:, :, None]
if im.shape[2] == 1:
im = np.repeat(im, 3, axis=2)
elif im.shape[2] == 4:
im = im[:, :, 0:3]
# normalize values to scale it between -1 to 1
im = (im - 127.5) / 127.5
im_h, im_w, im_c = im.shape
x, y = get_scale_factor(im_h, im_w)
# resize image
im = cv2.resize(im, None, fx=x, fy=y, interpolation=cv2.INTER_AREA)
# prepare input shape
im = np.transpose(im)
im = np.swapaxes(im, 1, 2)
im = np.expand_dims(im, axis=0).astype('float32')
# Initialize session and get prediction
session = onnxruntime.InferenceSession(MODEL_PATH, None)
input_name = session.get_inputs()[0].name
output_name = session.get_outputs()[0].name
result = session.run([output_name], {input_name: im})
# refine matte
matte = (np.squeeze(result[0]) * 255).astype('uint8')
matte = cv2.resize(matte, dsize=(im_w, im_h), interpolation=cv2.INTER_AREA)
# HACK - Could probably just convert this to PIL instead of writing
cv2.imwrite('out.png', matte)
image = Image.open(image_path)
matte = Image.open('out.png')
# obtain predicted foreground
image = np.asarray(image)
if len(image.shape) == 2:
image = image[:, :, None]
if image.shape[2] == 1:
image = np.repeat(image, 3, axis=2)
elif image.shape[2] == 4:
image = image[:, :, 0:3]
b, g, r = cv2.split(image)
mask = np.asarray(matte)
a = np.ones(mask.shape, dtype='uint8') * 255
alpha_im = cv2.merge([b, g, r, a], 4)
bg = np.zeros(alpha_im.shape)
new_mask = np.stack([mask, mask, mask, mask], axis=2)
foreground = np.where(new_mask > threshold, alpha_im, bg).astype(np.uint8)
return Image.fromarray(foreground)
title = "MODNet Background Remover"
description = "Gradio demo for MODNet, a model that can remove the background from a given image. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below."
article = "<div style='text-align: center;'> <a href='https://github.com/ZHKKKe/MODNet' target='_blank'>Github Repo</a> | <a href='https://arxiv.org/abs/2011.11961' target='_blank'>MODNet: Real-Time Trimap-Free Portrait Matting via Objective Decomposition</a> </div>"
url = "https://huggingface.co/datasets/nateraw/background-remover-files/resolve/main/twitter_profile_pic.jpeg"
image = Image.open(requests.get(url, stream=True).raw)
image.save('twitter_profile_pic.jpg')
url = "https://upload.wikimedia.org/wikipedia/commons/8/8d/President_Barack_Obama.jpg"
image = Image.open(requests.get(url, stream=True).raw)
image.save('obama.jpg')
interface = gr.Interface(
fn=main,
inputs=[
gr.inputs.Image(type='filepath'),
gr.inputs.Slider(minimum=0, maximum=250, default=100, step=5, label='Mask Cutoff Threshold'),
],
outputs='image',
examples=[['twitter_profile_pic.jpg', 120], ['obama.jpg', 155]],
title=title,
description=description,
article=article,
allow_flagging='never',
theme="default",
).launch(enable_queue=True, debug=True)