Spaces:
Sleeping
Sleeping
File size: 1,363 Bytes
3faa99b 5f57808 3faa99b 5f57808 3faa99b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 |
import os
from typing import List
import numpy as np
import pooch
from PIL import Image
from PIL.Image import Image as PILImage
from .base import BaseSession
class U2netpSession(BaseSession):
def predict(self, img: PILImage, *args, **kwargs) -> List[PILImage]:
ort_outs = self.inner_session.run(
None,
self.normalize(
img, (0.485, 0.456, 0.406), (0.229, 0.224, 0.225), (320, 320)
),
)
pred = ort_outs[0][:, 0, :, :]
ma = np.max(pred)
mi = np.min(pred)
pred = (pred - mi) / (ma - mi)
pred = np.squeeze(pred)
mask = Image.fromarray((pred * 255).astype("uint8"), mode="L")
mask = mask.resize(img.size, Image.LANCZOS)
return [mask]
@classmethod
def download_models(cls, *args, **kwargs):
fname = f"{cls.name()}.onnx"
pooch.retrieve(
"https://github.com/danielgatis/rembg/releases/download/v0.0.0/u2netp.onnx",
None
if cls.checksum_disabled(*args, **kwargs)
else "md5:8e83ca70e441ab06c318d82300c84806",
fname=fname,
path=cls.u2net_home(*args, **kwargs),
progressbar=True,
)
return os.path.join(cls.u2net_home(), fname)
@classmethod
def name(cls, *args, **kwargs):
return "u2netp"
|