Spaces:
Sleeping
Sleeping
Update rembg/bg.py
Browse files- rembg/bg.py +34 -162
rembg/bg.py
CHANGED
@@ -1,125 +1,26 @@
|
|
1 |
import io
|
|
|
2 |
import numpy as np
|
3 |
-
from PIL import Image
|
4 |
-
from typing import Any, List, Optional, Tuple, Union
|
5 |
from enum import Enum
|
6 |
-
from pymatting.alpha.estimate_alpha_cf import estimate_alpha_cf
|
7 |
-
from pymatting.foreground.estimate_foreground_ml import estimate_foreground_ml
|
8 |
-
from scipy.ndimage import binary_erosion
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
DEFAULT_SMOOTHING = 0.5
|
14 |
|
15 |
class ReturnType(Enum):
|
16 |
BYTES = 0
|
17 |
PILLOW = 1
|
18 |
NDARRAY = 2
|
19 |
|
20 |
-
def
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
) ->
|
27 |
-
if
|
28 |
-
img = img.convert("RGB")
|
29 |
-
|
30 |
-
img = np.asarray(img)
|
31 |
-
mask = np.asarray(mask)
|
32 |
-
|
33 |
-
is_foreground = mask > alpha_influence
|
34 |
-
is_background = mask < (1.0 - alpha_influence)
|
35 |
-
|
36 |
-
structure = None
|
37 |
-
if erode_structure_size > 0:
|
38 |
-
structure = np.ones((erode_structure_size, erode_structure_size), dtype=np.uint8)
|
39 |
-
|
40 |
-
is_foreground = binary_erosion(is_foreground, structure=structure)
|
41 |
-
is_background = binary_erosion(is_background, structure=structure, border_value=1)
|
42 |
-
|
43 |
-
trimap = np.full(mask.shape, dtype=np.uint8, fill_value=128)
|
44 |
-
trimap[is_foreground] = 255
|
45 |
-
trimap[is_background] = 0
|
46 |
-
|
47 |
-
img_normalized = img / 255.0
|
48 |
-
trimap_normalized = trimap / 255.0
|
49 |
-
|
50 |
-
alpha = estimate_alpha_cf(img_normalized, trimap_normalized)
|
51 |
-
foreground = estimate_foreground_ml(img_normalized, alpha)
|
52 |
-
cutout = stack_images(foreground, alpha)
|
53 |
-
|
54 |
-
cutout = np.clip(cutout * 255, 0, 255).astype(np.uint8)
|
55 |
-
cutout = Image.fromarray(cutout)
|
56 |
-
|
57 |
-
return cutout
|
58 |
-
#aca termina la modificacion
|
59 |
-
def naive_cutout(img: PILImage, mask: PILImage) -> PILImage:
|
60 |
-
empty = Image.new("RGBA", (img.size), 0)
|
61 |
-
cutout = Image.composite(img, empty, mask)
|
62 |
-
return cutout
|
63 |
-
|
64 |
-
|
65 |
-
def get_concat_v_multi(imgs: List[PILImage]) -> PILImage:
|
66 |
-
pivot = imgs.pop(0)
|
67 |
-
for im in imgs:
|
68 |
-
pivot = get_concat_v(pivot, im)
|
69 |
-
return pivot
|
70 |
-
|
71 |
-
|
72 |
-
def get_concat_v(img1: PILImage, img2: PILImage) -> PILImage:
|
73 |
-
dst = Image.new("RGBA", (img1.width, img1.height + img2.height))
|
74 |
-
dst.paste(img1, (0, 0))
|
75 |
-
dst.paste(img2, (0, img1.height))
|
76 |
-
return dst
|
77 |
-
|
78 |
-
|
79 |
-
def post_process(mask: np.ndarray) -> np.ndarray:
|
80 |
-
"""
|
81 |
-
Post Process the mask for a smooth boundary by applying Morphological Operations
|
82 |
-
Research based on paper: https://www.sciencedirect.com/science/article/pii/S2352914821000757
|
83 |
-
args:
|
84 |
-
mask: Binary Numpy Mask
|
85 |
-
"""
|
86 |
-
mask = morphologyEx(mask, MORPH_OPEN, kernel)
|
87 |
-
mask = GaussianBlur(mask, (5, 5), sigmaX=2, sigmaY=2, borderType=BORDER_DEFAULT)
|
88 |
-
mask = np.where(mask < 127, 0, 255).astype(np.uint8) # convert again to binary
|
89 |
-
return mask
|
90 |
-
|
91 |
-
|
92 |
-
def apply_background_color(img: PILImage, color: Tuple[int, int, int, int]) -> PILImage:
|
93 |
-
r, g, b, a = color
|
94 |
-
colored_image = Image.new("RGBA", img.size, (r, g, b, a))
|
95 |
-
colored_image.paste(img, mask=img)
|
96 |
-
|
97 |
-
return colored_image
|
98 |
-
|
99 |
-
|
100 |
-
def fix_image_orientation(img: PILImage) -> PILImage:
|
101 |
-
return ImageOps.exif_transpose(img)
|
102 |
-
|
103 |
-
|
104 |
-
def download_models() -> None:
|
105 |
-
for session in sessions_class:
|
106 |
-
session.download_models()
|
107 |
-
|
108 |
-
|
109 |
-
def remove(
|
110 |
-
data: Union[bytes, PILImage, np.ndarray],
|
111 |
-
alpha_matting: bool = False,
|
112 |
-
alpha_matting_foreground_threshold: int = 240,
|
113 |
-
alpha_matting_background_threshold: int = 10,
|
114 |
-
alpha_matting_erode_size: int = 10,
|
115 |
-
session: Optional[BaseSession] = None,
|
116 |
-
only_mask: bool = False,
|
117 |
-
post_process_mask: bool = False,
|
118 |
-
bgcolor: Optional[Tuple[int, int, int, int]] = None,
|
119 |
-
*args: Optional[Any],
|
120 |
-
**kwargs: Optional[Any]
|
121 |
-
) -> Union[bytes, PILImage, np.ndarray]:
|
122 |
-
if isinstance(data, PILImage):
|
123 |
return_type = ReturnType.PILLOW
|
124 |
img = data
|
125 |
elif isinstance(data, bytes):
|
@@ -129,57 +30,28 @@ def remove(
|
|
129 |
return_type = ReturnType.NDARRAY
|
130 |
img = Image.fromarray(data)
|
131 |
else:
|
132 |
-
raise ValueError("Input type {} is not supported.".format(type(data))
|
133 |
|
134 |
-
# Fix image orientation
|
135 |
img = fix_image_orientation(img)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
136 |
|
137 |
-
if session is None:
|
138 |
-
session = new_session("u2net", *args, **kwargs)
|
139 |
-
|
140 |
-
masks = session.predict(img, *args, **kwargs)
|
141 |
-
cutouts = []
|
142 |
-
|
143 |
-
for mask in masks:
|
144 |
-
if post_process_mask:
|
145 |
-
mask = Image.fromarray(post_process(np.array(mask)))
|
146 |
-
|
147 |
-
if only_mask:
|
148 |
-
cutout = mask
|
149 |
-
|
150 |
-
elif alpha_matting:
|
151 |
-
try:
|
152 |
-
cutout = alpha_matting_cutout(
|
153 |
-
img,
|
154 |
-
mask,
|
155 |
-
alpha_matting_foreground_threshold,
|
156 |
-
alpha_matting_background_threshold,
|
157 |
-
alpha_matting_erode_size,
|
158 |
-
)
|
159 |
-
except ValueError:
|
160 |
-
cutout = naive_cutout(img, mask)
|
161 |
-
|
162 |
-
else:
|
163 |
-
cutout = naive_cutout(img, mask)
|
164 |
-
|
165 |
-
cutouts.append(cutout)
|
166 |
-
|
167 |
-
cutout = img
|
168 |
-
if len(cutouts) > 0:
|
169 |
-
cutout = get_concat_v_multi(cutouts)
|
170 |
-
|
171 |
-
if bgcolor is not None and not only_mask:
|
172 |
-
cutout = apply_background_color(cutout, bgcolor)
|
173 |
-
|
174 |
-
if ReturnType.PILLOW == return_type:
|
175 |
-
return cutout
|
176 |
-
|
177 |
-
if ReturnType.NDARRAY == return_type:
|
178 |
-
return np.asarray(cutout)
|
179 |
-
|
180 |
-
bio = io.BytesIO()
|
181 |
-
cutout.save(bio, "PNG")
|
182 |
-
bio.seek(0)
|
183 |
-
|
184 |
-
return bio.read()
|
185 |
|
|
|
1 |
import io
|
2 |
+
from typing import Any, Union
|
3 |
import numpy as np
|
4 |
+
from PIL import Image
|
|
|
5 |
from enum import Enum
|
|
|
|
|
|
|
6 |
|
7 |
+
from rembg import new_session, remove
|
8 |
+
from rembg.sessions.base import BaseSession
|
9 |
+
from rembg.util.util import fix_image_orientation
|
|
|
10 |
|
11 |
class ReturnType(Enum):
|
12 |
BYTES = 0
|
13 |
PILLOW = 1
|
14 |
NDARRAY = 2
|
15 |
|
16 |
+
def remove_background(
|
17 |
+
data: Union[bytes, Image.Image, np.ndarray],
|
18 |
+
alpha_influence: float = 0.5,
|
19 |
+
segmentation_strength: float = 0.5,
|
20 |
+
smoothing: float = 0.5,
|
21 |
+
model: str = "u2net",
|
22 |
+
) -> Union[bytes, Image.Image, np.ndarray]:
|
23 |
+
if isinstance(data, Image.Image):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
return_type = ReturnType.PILLOW
|
25 |
img = data
|
26 |
elif isinstance(data, bytes):
|
|
|
30 |
return_type = ReturnType.NDARRAY
|
31 |
img = Image.fromarray(data)
|
32 |
else:
|
33 |
+
raise ValueError("Input type {} is not supported.".format(type(data))
|
34 |
|
|
|
35 |
img = fix_image_orientation(img)
|
36 |
+
session = new_session(model)
|
37 |
+
output = remove(
|
38 |
+
img,
|
39 |
+
alpha_matting=True,
|
40 |
+
alpha_matting_foreground_threshold=alpha_influence * 255,
|
41 |
+
alpha_matting_background_threshold=(1 - alpha_influence) * 255,
|
42 |
+
alpha_matting_erode_size=int(segmentation_strength * 20),
|
43 |
+
alpha_matting_smoothing=smoothing,
|
44 |
+
session=session
|
45 |
+
)
|
46 |
+
|
47 |
+
if return_type == ReturnType.PILLOW:
|
48 |
+
return output
|
49 |
+
elif return_type == ReturnType.NDARRAY:
|
50 |
+
return np.array(output)
|
51 |
+
else:
|
52 |
+
bio = io.BytesIO()
|
53 |
+
output.save(bio, "PNG")
|
54 |
+
bio.seek(0)
|
55 |
+
return bio.read()
|
56 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
|