from typing import Dict, List, Tuple import numpy as np import onnxruntime as ort from PIL import Image from PIL.Image import Image as PILImage class BaseSession: def __init__(self, model_name: str, inner_session: ort.InferenceSession): self.model_name = model_name self.inner_session = inner_session def normalize( self, img: PILImage, mean: Tuple[float, float, float], std: Tuple[float, float, float], size: Tuple[int, int], ) -> Dict[str, np.ndarray]: im = img.convert("RGB").resize(size, Image.Resampling.LANCZOS) im_ary = np.array(im) im_ary = im_ary / np.max(im_ary) tmpImg = np.zeros((im_ary.shape[0], im_ary.shape[1], 3)) tmpImg[:, :, 0] = (im_ary[:, :, 0] - mean[0]) / std[0] tmpImg[:, :, 1] = (im_ary[:, :, 1] - mean[1]) / std[1] tmpImg[:, :, 2] = (im_ary[:, :, 2] - mean[2]) / std[2] tmpImg = tmpImg.transpose((2, 0, 1)) return { self.inner_session.get_inputs()[0] .name: np.expand_dims(tmpImg, 0) .astype(np.float32) } def predict(self, img: PILImage) -> List[PILImage]: raise NotImplementedError