import os from typing import List import numpy as np import pooch from PIL import Image from PIL.Image import Image as PILImage from .base import BaseSession class SiluetaSession(BaseSession): def predict(self, img: PILImage, *args, **kwargs) -> List[PILImage]: ort_outs = self.inner_session.run( None, self.normalize( img, (0.485, 0.456, 0.406), (0.229, 0.224, 0.225), (320, 320) ), ) pred = ort_outs[0][:, 0, :, :] ma = np.max(pred) mi = np.min(pred) pred = (pred - mi) / (ma - mi) pred = np.squeeze(pred) mask = Image.fromarray((pred * 255).astype("uint8"), mode="L") mask = mask.resize(img.size, Image.LANCZOS) return [mask] @classmethod def download_models(cls, *args, **kwargs): fname = f"{cls.name()}.onnx" pooch.retrieve( "https://github.com/danielgatis/rembg/releases/download/v0.0.0/silueta.onnx", None if cls.checksum_disabled(*args, **kwargs) else "md5:55e59e0d8062d2f5d013f4725ee84782", fname=fname, path=cls.u2net_home(*args, **kwargs), progressbar=True, ) return os.path.join(cls.u2net_home(), fname) @classmethod def name(cls, *args, **kwargs): return "silueta"