Spaces:
Running
Running
# ------------------------------------------------------------------------------------------------ | |
# Deformable DETR | |
# Copyright (c) 2020 SenseTime. All Rights Reserved. | |
# Licensed under the Apache License, Version 2.0 [see LICENSE for details] | |
# ------------------------------------------------------------------------------------------------ | |
# Modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/tree/pytorch_1.0.0 | |
# ------------------------------------------------------------------------------------------------ | |
# Copyright (c) Facebook, Inc. and its affiliates. | |
# Modified by Bowen Cheng from https://github.com/fundamentalvision/Deformable-DETR | |
from __future__ import absolute_import | |
from __future__ import print_function | |
from __future__ import division | |
import time | |
import torch | |
import torch.nn as nn | |
from torch.autograd import gradcheck | |
from functions.ms_deform_attn_func import MSDeformAttnFunction, ms_deform_attn_core_pytorch | |
N, M, D = 1, 2, 2 | |
Lq, L, P = 2, 2, 2 | |
shapes = torch.as_tensor([(6, 4), (3, 2)], dtype=torch.long).cuda() | |
level_start_index = torch.cat((shapes.new_zeros((1, )), shapes.prod(1).cumsum(0)[:-1])) | |
S = sum([(H*W).item() for H, W in shapes]) | |
torch.manual_seed(3) | |
def check_forward_equal_with_pytorch_double(): | |
value = torch.rand(N, S, M, D).cuda() * 0.01 | |
sampling_locations = torch.rand(N, Lq, M, L, P, 2).cuda() | |
attention_weights = torch.rand(N, Lq, M, L, P).cuda() + 1e-5 | |
attention_weights /= attention_weights.sum(-1, keepdim=True).sum(-2, keepdim=True) | |
im2col_step = 2 | |
output_pytorch = ms_deform_attn_core_pytorch(value.double(), shapes, sampling_locations.double(), attention_weights.double()).detach().cpu() | |
output_cuda = MSDeformAttnFunction.apply(value.double(), shapes, level_start_index, sampling_locations.double(), attention_weights.double(), im2col_step).detach().cpu() | |
fwdok = torch.allclose(output_cuda, output_pytorch) | |
max_abs_err = (output_cuda - output_pytorch).abs().max() | |
max_rel_err = ((output_cuda - output_pytorch).abs() / output_pytorch.abs()).max() | |
print(f'* {fwdok} check_forward_equal_with_pytorch_double: max_abs_err {max_abs_err:.2e} max_rel_err {max_rel_err:.2e}') | |
def check_forward_equal_with_pytorch_float(): | |
value = torch.rand(N, S, M, D).cuda() * 0.01 | |
sampling_locations = torch.rand(N, Lq, M, L, P, 2).cuda() | |
attention_weights = torch.rand(N, Lq, M, L, P).cuda() + 1e-5 | |
attention_weights /= attention_weights.sum(-1, keepdim=True).sum(-2, keepdim=True) | |
im2col_step = 2 | |
output_pytorch = ms_deform_attn_core_pytorch(value, shapes, sampling_locations, attention_weights).detach().cpu() | |
output_cuda = MSDeformAttnFunction.apply(value, shapes, level_start_index, sampling_locations, attention_weights, im2col_step).detach().cpu() | |
fwdok = torch.allclose(output_cuda, output_pytorch, rtol=1e-2, atol=1e-3) | |
max_abs_err = (output_cuda - output_pytorch).abs().max() | |
max_rel_err = ((output_cuda - output_pytorch).abs() / output_pytorch.abs()).max() | |
print(f'* {fwdok} check_forward_equal_with_pytorch_float: max_abs_err {max_abs_err:.2e} max_rel_err {max_rel_err:.2e}') | |
def check_gradient_numerical(channels=4, grad_value=True, grad_sampling_loc=True, grad_attn_weight=True): | |
value = torch.rand(N, S, M, channels).cuda() * 0.01 | |
sampling_locations = torch.rand(N, Lq, M, L, P, 2).cuda() | |
attention_weights = torch.rand(N, Lq, M, L, P).cuda() + 1e-5 | |
attention_weights /= attention_weights.sum(-1, keepdim=True).sum(-2, keepdim=True) | |
im2col_step = 2 | |
func = MSDeformAttnFunction.apply | |
value.requires_grad = grad_value | |
sampling_locations.requires_grad = grad_sampling_loc | |
attention_weights.requires_grad = grad_attn_weight | |
gradok = gradcheck(func, (value.double(), shapes, level_start_index, sampling_locations.double(), attention_weights.double(), im2col_step)) | |
print(f'* {gradok} check_gradient_numerical(D={channels})') | |
if __name__ == '__main__': | |
check_forward_equal_with_pytorch_double() | |
check_forward_equal_with_pytorch_float() | |
for channels in [30, 32, 64, 71, 1025, 2048, 3096]: | |
check_gradient_numerical(channels, True, True, True) | |