File size: 7,108 Bytes
a492ba5
7c7890b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a492ba5
 
 
 
 
 
 
 
 
 
7c7890b
a492ba5
 
 
 
 
 
 
 
 
 
 
7c7890b
 
 
a492ba5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c7890b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a492ba5
7c7890b
 
 
 
 
 
 
 
a492ba5
7c7890b
 
a492ba5
7c7890b
 
 
 
 
 
 
a492ba5
 
 
 
 
 
 
 
 
 
 
 
7c7890b
a492ba5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c7890b
 
 
 
 
 
 
 
 
 
 
a492ba5
7c7890b
 
 
 
 
 
 
 
 
 
 
 
a492ba5
7c7890b
 
 
 
a492ba5
 
 
 
 
 
 
 
7c7890b
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
from diffusers import AutoPipelineForImage2Image, AutoPipelineForText2Image
import torch
import os

try:
    import intel_extension_for_pytorch as ipex
except:
    pass

from PIL import Image
import numpy as np
import gradio as gr
import psutil
import time

SAFETY_CHECKER = os.environ.get("SAFETY_CHECKER", None)
TORCH_COMPILE = os.environ.get("TORCH_COMPILE", None)
HF_TOKEN = os.environ.get("HF_TOKEN", None)
# check if MPS is available OSX only M1/M2/M3 chips
mps_available = hasattr(torch.backends, "mps") and torch.backends.mps.is_available()
xpu_available = hasattr(torch, "xpu") and torch.xpu.is_available()
device = torch.device(
    "cuda" if torch.cuda.is_available() else "xpu" if xpu_available else "cpu"
)
torch_device = device
torch_dtype = torch.float16

print(f"SAFETY_CHECKER: {SAFETY_CHECKER}")
print(f"TORCH_COMPILE: {TORCH_COMPILE}")
print(f"device: {device}")

if mps_available:
    device = torch.device("mps")
    torch_device = "cpu"
    torch_dtype = torch.float32

if SAFETY_CHECKER == "True":
    i2i_pipe = AutoPipelineForImage2Image.from_pretrained(
        "stabilityai/sdxl-turbo",
        torch_dtype=torch_dtype,
        variant="fp16" if torch_dtype == torch.float16 else "fp32",
    )
    t2i_pipe = AutoPipelineForText2Image.from_pretrained(
        "stabilityai/sdxl-turbo",
        torch_dtype=torch_dtype,
        variant="fp16" if torch_dtype == torch.float16 else "fp32",
    )
else:
    i2i_pipe = AutoPipelineForImage2Image.from_pretrained(
        "stabilityai/sdxl-turbo",
        safety_checker=None,
        torch_dtype=torch_dtype,
        variant="fp16" if torch_dtype == torch.float16 else "fp32",
    )
    t2i_pipe = AutoPipelineForText2Image.from_pretrained(
        "stabilityai/sdxl-turbo",
        safety_checker=None,
        torch_dtype=torch_dtype,
        variant="fp16" if torch_dtype == torch.float16 else "fp32",
    )


t2i_pipe.to(device=torch_device, dtype=torch_dtype).to(device)
t2i_pipe.set_progress_bar_config(disable=True)
i2i_pipe.to(device=torch_device, dtype=torch_dtype).to(device)
i2i_pipe.set_progress_bar_config(disable=True)


def pad_image(image):
    w, h = image.size
    if w == h:
        return image
    elif w > h:
        new_image = Image.new(image.mode, (w, w), (0, 0, 0))
        new_image.paste(image, (0, (w - h) // 2))
        return new_image
    else:
        new_image = Image.new(image.mode, (h, h), (0, 0, 0))
        new_image.paste(image, ((h - w) // 2, 0))
        return new_image


async def predict(init_image, prompt, strength, steps, seed=1231231):
    if init_image is not None:
        init_image = pad_image(init_image).convert("RGB").resize((512, 512))
        generator = torch.manual_seed(seed)
        last_time = time.time()
        results = i2i_pipe(
            prompt=prompt,
            image=init_image,
            generator=generator,
            num_inference_steps=steps,
            guidance_scale=0.0,
            strength=strength,
            width=512,
            height=512,
            output_type="pil",
        )
    else:
        generator = torch.manual_seed(seed)
        last_time = time.time()
        results = t2i_pipe(
            prompt=prompt,
            generator=generator,
            num_inference_steps=steps,
            guidance_scale=0.0,
            width=512,
            height=512,
            output_type="pil",
        )
    print(f"Pipe took {time.time() - last_time} seconds")
    nsfw_content_detected = (
        results.nsfw_content_detected[0]
        if "nsfw_content_detected" in results
        else False
    )
    if nsfw_content_detected:
        gr.Warning("NSFW content detected.")
        return Image.new("RGB", (512, 512))
    return results.images[0]


css = """
#container{
    margin: 0 auto;
    max-width: 80rem;
}
#intro{
    max-width: 100%;
    text-align: center;
    margin: 0 auto;
}
"""
with gr.Blocks(css=css) as demo:
    init_image_state = gr.State()
    with gr.Column(elem_id="container"):
        gr.Markdown(
            """# SDXL Turbo Image to Image/Text to Image
            ## Unofficial Demo
            SDXL Turbo model can generate high quality images in a single pass read more on [stability.ai post](https://stability.ai/news/stability-ai-sdxl-turbo).  
            **Model**: https://huggingface.co/stabilityai/sdxl-turbo
            """,
            elem_id="intro",
        )
        with gr.Row():
            prompt = gr.Textbox(
                placeholder="Insert your prompt here:",
                scale=5,
                container=False,
            )
            generate_bt = gr.Button("Generate", scale=1)
        with gr.Row():
            with gr.Column():
                image_input = gr.Image(
                    sources=["upload", "webcam", "clipboard"],
                    label="Webcam",
                    type="pil",
                )
            with gr.Column():
                image = gr.Image(type="filepath")
                with gr.Accordion("Advanced options", open=False):
                    strength = gr.Slider(
                        label="Strength",
                        value=0.7,
                        minimum=0.0,
                        maximum=1.0,
                        step=0.001,
                    )
                    steps = gr.Slider(
                        label="Steps", value=2, minimum=1, maximum=10, step=1
                    )
                    seed = gr.Slider(
                        randomize=True,
                        minimum=0,
                        maximum=12013012031030,
                        label="Seed",
                        step=1,
                    )

        with gr.Accordion("Run with diffusers"):
            gr.Markdown(
                """## Running SDXL Turbo with `diffusers`
            ```bash
            pip install diffusers==0.23.1
            ```
            ```py
            from diffusers import DiffusionPipeline

            pipe = DiffusionPipeline.from_pretrained(
                "stabilityai/sdxl-turbo"
            ).to("cuda")
            results = pipe(
                prompt="A cinematic shot of a baby racoon wearing an intricate italian priest robe",
                num_inference_steps=1,
                guidance_scale=0.0,
            )
            imga = results.images[0]
            imga.save("image.png")
            ```
            """
            )

        inputs = [image_input, prompt, strength, steps, seed]
        generate_bt.click(fn=predict, inputs=inputs, outputs=image, show_progress=False)
        prompt.input(fn=predict, inputs=inputs, outputs=image, show_progress=False)
        steps.change(fn=predict, inputs=inputs, outputs=image, show_progress=False)
        seed.change(fn=predict, inputs=inputs, outputs=image, show_progress=False)
        strength.change(fn=predict, inputs=inputs, outputs=image, show_progress=False)
        image_input.change(
            fn=lambda x: x,
            inputs=image_input,
            outputs=init_image_state,
            show_progress=False,
            queue=False,
        )

demo.queue()
demo.launch()