from diffusers import DiffusionPipeline import torch import os try: import intel_extension_for_pytorch as ipex except: pass from PIL import Image import numpy as np import gradio as gr import psutil import time SAFETY_CHECKER = os.environ.get("SAFETY_CHECKER", None) TORCH_COMPILE = os.environ.get("TORCH_COMPILE", None) HF_TOKEN = os.environ.get("HF_TOKEN", None) # check if MPS is available OSX only M1/M2/M3 chips mps_available = hasattr(torch.backends, "mps") and torch.backends.mps.is_available() xpu_available = hasattr(torch, "xpu") and torch.xpu.is_available() device = torch.device( "cuda" if torch.cuda.is_available() else "xpu" if xpu_available else "cpu" ) torch_device = device torch_dtype = torch.float16 print(f"SAFETY_CHECKER: {SAFETY_CHECKER}") print(f"TORCH_COMPILE: {TORCH_COMPILE}") print(f"device: {device}") if mps_available: device = torch.device("mps") torch_device = "cpu" torch_dtype = torch.float32 if SAFETY_CHECKER == "True": pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", revision="pr/4") else: pipe = DiffusionPipeline.from_pretrained( "stabilityai/sdxl-turbo", revision="pr/4", safety_checker=None ) pipe.to(device=torch_device, dtype=torch_dtype).to(device) pipe.unet.to(memory_format=torch.channels_last) pipe.set_progress_bar_config(disable=True) def predict(prompt, steps, seed=1231231): generator = torch.manual_seed(seed) last_time = time.time() results = pipe( prompt=prompt, generator=generator, num_inference_steps=steps, guidance_scale=0.0, width=512, height=512, # original_inference_steps=params.lcm_steps, output_type="pil", ) print(f"Pipe took {time.time() - last_time} seconds") nsfw_content_detected = ( results.nsfw_content_detected[0] if "nsfw_content_detected" in results else False ) if nsfw_content_detected: gr.Warning("NSFW content detected.") return Image.new("RGB", (512, 512)) return results.images[0] css = """ #container{ margin: 0 auto; max-width: 40rem; } #intro{ max-width: 100%; text-align: center; margin: 0 auto; } """ with gr.Blocks(css=css) as demo: with gr.Column(elem_id="container"): gr.Markdown( """# SDXL Turbo - Text To Image ## Unofficial Demo SDXL Turbo model can generate high quality images in a single pass read more on [stability.ai post](https://stability.ai/news/stability-ai-sdxl-turbo). **Model**: https://huggingface.co/stabilityai/sdxl-turbo """, elem_id="intro", ) with gr.Row(): with gr.Row(): prompt = gr.Textbox( placeholder="Insert your prompt here:", scale=5, container=False ) generate_bt = gr.Button("Generate", scale=1) image = gr.Image(type="filepath") with gr.Accordion("Advanced options", open=False): steps = gr.Slider(label="Steps", value=2, minimum=1, maximum=10, step=1) seed = gr.Slider( randomize=True, minimum=0, maximum=12013012031030, label="Seed", step=1 ) with gr.Accordion("Run with diffusers"): gr.Markdown( """## Running SDXL Turbo with `diffusers` ```bash pip install diffusers==0.23.1 ``` ```py from diffusers import DiffusionPipeline pipe = DiffusionPipeline.from_pretrained( "stabilityai/sdxl-turbo", revision="refs/pr/4" ).to("cuda") results = pipe( prompt="A cinematic shot of a baby racoon wearing an intricate italian priest robe", num_inference_steps=1, guidance_scale=0.0, ) imga = results.images[0] imga.save("image.png") ``` """ ) inputs = [prompt, steps, seed] generate_bt.click(fn=predict, inputs=inputs, outputs=image, show_progress=False) prompt.input(fn=predict, inputs=inputs, outputs=image, show_progress=False) steps.change(fn=predict, inputs=inputs, outputs=image, show_progress=False) seed.change(fn=predict, inputs=inputs, outputs=image, show_progress=False) demo.queue() demo.launch()