import os import streamlit as st from pathlib import Path from landingai.predict import Predictor from landingai.pipeline.image_source import NetworkedCamera, FrameSet from landingai.pipeline.postprocessing import get_class_counts from landingai.st_utils import render_svg VIDEO_CACHE_PATH = Path("cached_data") VIDEO_CACHE_PATH.mkdir(exist_ok=True, parents=True) VIDEO_CACHE_PATH = VIDEO_CACHE_PATH / "latest.mp4" VIDEO_LEN_SEC = 10 FPS = 2 PLAYLIST_URL = ( "https://live.hdontap.com/hls/hosb1/topanga_swellmagnet.stream/playlist.m3u8" ) API_KEY = os.environ["API_KEY"] ENDPOINT_ID = os.environ["ENDPOINT_ID"] render_svg(Path("./assets/landing-logo.svg").read_text()) st.title("Topanga Beach Surfer Counter") st.write( "This application will grab the latest 10s clip of surfers from the Topanga Beach surf cam " "and count the number of surfers there. It uses a model built with LandingLens to detect " "the surfers. You can build your own model at [landing.ai](https://landing.ai/) or run the " "code yourself by getting it from our [github page](https://github.com/landing-ai/landingai-python/tree/main/examples/apps/surfer-count)." ) def get_latest_surfer_count(): vid_src = NetworkedCamera(PLAYLIST_URL, fps=FPS) surfer_model = Predictor(ENDPOINT_ID, api_key=API_KEY) frs = FrameSet() for i, frame in enumerate(vid_src): if i >= VIDEO_LEN_SEC * FPS: break frs.extend(frame) frs.run_predict(predictor=surfer_model).overlay_predictions() frs.save_video(str(VIDEO_CACHE_PATH), video_fps=FPS, image_src="overlay") counts = get_class_counts(frs) if "surfer" in counts: surfers = counts["surfer"] / (VIDEO_LEN_SEC * FPS) else: surfers = 0 st.video(open(VIDEO_CACHE_PATH, "rb").read()) st.write(f"Surfer count: **{surfers}**") st.title("Surfer Counter") button = st.button("Get Topanga Beach Surfer Count", on_click=get_latest_surfer_count)