Spaces:
Sleeping
Sleeping
import os | |
import logging | |
import gradio as gr | |
from huggingface_hub import hf_hub_download | |
# Install necessary libraries using os.system | |
os.system("pip install --upgrade pip") | |
os.system("pip install llama-cpp-agent huggingface_hub trafilatura beautifulsoup4 requests duckduckgo-search googlesearch-python") | |
# Attempt to import all required modules | |
try: | |
from llama_cpp import Llama | |
from llama_cpp_agent.providers import LlamaCppPythonProvider | |
from llama_cpp_agent import LlamaCppAgent, MessagesFormatterType | |
from llama_cpp_agent.chat_history import BasicChatHistory | |
from llama_cpp_agent.chat_history.messages import Roles | |
from llama_cpp_agent.llm_output_settings import ( | |
LlmStructuredOutputSettings, | |
LlmStructuredOutputType, | |
) | |
from llama_cpp_agent.tools import WebSearchTool | |
from llama_cpp_agent.prompt_templates import web_search_system_prompt, research_system_prompt | |
from utils import CitingSources | |
from settings import get_context_by_model, get_messages_formatter_type | |
except ImportError as e: | |
raise ImportError(f"Error importing modules: {e}") | |
# Download the models | |
hf_hub_download( | |
repo_id="bartowski/Mistral-7B-Instruct-v0.3-GGUF", | |
filename="Mistral-7B-Instruct-v0.3-Q6_K.gguf", | |
local_dir="./models" | |
) | |
hf_hub_download( | |
repo_id="bartowski/Meta-Llama-3-8B-Instruct-GGUF", | |
filename="Meta-Llama-3-8B-Instruct-Q6_K.gguf", | |
local_dir="./models" | |
) | |
hf_hub_download( | |
repo_id="TheBloke/Mixtral-8x7B-Instruct-v0.1-GGUF", | |
filename="mixtral-8x7b-instruct-v0.1.Q5_K_M.gguf", | |
local_dir="./models" | |
) | |
# Function to respond to user messages | |
def respond(message, temperature, top_p, top_k, repeat_penalty): | |
try: | |
model = "mixtral-8x7b-instruct-v0.1.Q5_K_M.gguf" | |
max_tokens = 3000 | |
chat_template = get_messages_formatter_type(model) | |
llm = Llama( | |
model_path=f"models/{model}", | |
flash_attn=True, | |
n_gpu_layers=81, | |
n_batch=1024, | |
n_ctx=get_context_by_model(model), | |
) | |
provider = LlamaCppPythonProvider(llm) | |
logging.info(f"Loaded chat examples: {chat_template}") | |
search_tool = WebSearchTool( | |
llm_provider=provider, | |
message_formatter_type=chat_template, | |
max_tokens_search_results=12000, | |
max_tokens_per_summary=2048, | |
) | |
web_search_agent = LlamaCppAgent( | |
provider, | |
system_prompt=web_search_system_prompt, | |
predefined_messages_formatter_type=chat_template, | |
debug_output=True, | |
) | |
answer_agent = LlamaCppAgent( | |
provider, | |
system_prompt=research_system_prompt, | |
predefined_messages_formatter_type=chat_template, | |
debug_output=True, | |
) | |
settings = provider.get_provider_default_settings() | |
settings.stream = False | |
settings.temperature = temperature | |
settings.top_k = top_k | |
settings.top_p = top_p | |
settings.max_tokens = max_tokens | |
settings.repeat_penalty = repeat_penalty | |
output_settings = LlmStructuredOutputSettings.from_functions( | |
[search_tool.get_tool()] | |
) | |
messages = BasicChatHistory() | |
result = web_search_agent.get_chat_response( | |
message, | |
llm_sampling_settings=settings, | |
structured_output_settings=output_settings, | |
add_message_to_chat_history=False, | |
add_response_to_chat_history=False, | |
print_output=False, | |
) | |
outputs = "" | |
settings.stream = True | |
response_text = answer_agent.get_chat_response( | |
f"Write a detailed and complete research document that fulfills the following user request: '{message}', based on the information from the web below.\n\n" + | |
result[0]["return_value"], | |
role=Roles.tool, | |
llm_sampling_settings=settings, | |
chat_history=messages, | |
returns_streaming_generator=True, | |
print_output=False, | |
) | |
for text in response_text: | |
outputs += text | |
output_settings = LlmStructuredOutputSettings.from_pydantic_models( | |
[CitingSources], LlmStructuredOutputType.object_instance | |
) | |
citing_sources = answer_agent.get_chat_response( | |
"Cite the sources you used in your response.", | |
role=Roles.tool, | |
llm_sampling_settings=settings, | |
chat_history=messages, | |
returns_streaming_generator=False, | |
structured_output_settings=output_settings, | |
print_output=False, | |
) | |
outputs += "\n\nSources:\n" | |
outputs += "\n".join(citing_sources.sources) | |
return outputs | |
except Exception as e: | |
return f"An error occurred: {e}" | |
# Gradio interface | |
demo = gr.Interface( | |
fn=respond, | |
inputs=[ | |
gr.Textbox(label="Enter your message:"), | |
gr.Slider(minimum=0.1, maximum=1.0, value=0.45, step=0.1, label="Temperature"), | |
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p"), | |
gr.Slider(minimum=0, maximum=100, value=40, step=1, label="Top-k"), | |
gr.Slider(minimum=0.0, maximum=2.0, value=1.1, step=0.1, label="Repetition penalty") | |
], | |
outputs="text", | |
title="Novav2 Web Engine" | |
) | |
if __name__ == "__main__": | |
demo.launch() | |