import gradio as gr import os import openai from newspaper import Article import json import re from transformers import GPT2Tokenizer import requests # define the text summarizer function def text_prompt(request, system_role, page_urls_str, api_key, api_base, deployment_id, temp): tokenizer = GPT2Tokenizer.from_pretrained("gpt2") page_urls = [page_url_str for page_url_str in page_urls_str.split("\n") if page_url_str] if len(page_urls) == 0: return "", "urls not found", "" page_texts = [] response_texts = [] total_tokens = 0 for page_url in page_urls: try: headers = {'User-Agent': 'Chrome/83.0.4103.106'} response = requests.get(page_url, headers=headers) html = response.text page = Article('') page.set_html(html) page.parse() except Exception as e: return "", f"--- An error occurred while processing the URL: {e} ---", "" sentences = page.text.split('.') tokens = [] page_text = "" for sentence in sentences: tokens.extend(tokenizer.tokenize(sentence)) # Trim text to a maximum of 3100 tokens if len(tokens) > 3100: break page_text += sentence + ". " tokens.extend(tokenizer.tokenize(request)) tokens.extend(tokenizer.tokenize(system_role)) # Delete the last space page_text = page_text.strip() num_tokens = len(tokens) tokens_condition = num_tokens > 10 api_key_condition = len(api_key) > 6 deployment_id_condition = len(deployment_id) > 6 if tokens_condition and api_key_condition and deployment_id_condition: openai.api_type = "azure" openai.api_version = "2023-05-15" openai.api_base = api_base openai.api_key = api_key max_tokens = 4000 - num_tokens # TODO: change 4096 to a dictionary with the max tokens for each deploymend_id # get the response from openai API try: response = openai.ChatCompletion.create( deployment_id=deployment_id, messages=[ {"role": "system", "content": system_role}, {"role": "user", "content": request + "\n\n" + 'Text:\n\n""""' + page_text + '\n""""'} ], max_tokens=max_tokens, temperature=temp, top_p=1.0, ) # get the response text response_text = response['choices'][0]['message']['content'] total_tokens += response["usage"]["total_tokens"] # clean the response text response_text = re.sub(r'\s+', ' ', response_text) response_text = f"#### [{page.title}]({page_url})\n\n{response_text.strip()}\n" except Exception as e: response_text = f"#### [{page.title}]({page_url})\n\n" response_text += f"--- An error occurred while processing the request: {e} ---\n" page_texts.append(page.text) response_texts.append(response_text) else: page_text_temp = "ERROR:\n\n" if page.text: page_text_temp += page.text response_text_temp = "#### " if page.title: response_text_temp += f"[{page.title}]({page_url})" if not tokens_condition: response_text_temp += "\n\nERROR: Tokens problems! Maybe it can't read the URL. " if not api_key_condition: response_text_temp += "\n\nERROR: API Key problems! Copy and paste the API Key (be careful with copying spaces at the beginning or end of the API Key). " if not deployment_id_condition: response_text_temp += "\n\nERROR: Deployment_id problems! Copy and paste the deployment_id (be careful with copying spaces at the beginning or end of the deployment_id). " page_texts.append(page_text_temp) response_texts.append(response_text_temp) page_texts_str = "".join([f"====== NEW URL: {URL} ======\n{page_text}\n\n" for page_text, URL in zip(page_texts, page_urls)]) response_texts_str = "\n\n".join([response_text for response_text in response_texts]) total_tokens_str = str(total_tokens) + " (${:.2f} USD)".format(total_tokens / 1000 * 0.03) return page_texts_str, response_texts_str, total_tokens_str # define the gradio interface iface = gr.Interface( fn=text_prompt, inputs=[gr.Textbox(lines=1, placeholder="Enter your prompt here...", label="Prompt:", type="text"), gr.Textbox(lines=1, placeholder="Enter your system-role description here...", label="System Role:", type="text"), gr.Textbox(lines=10, placeholder="Enter the Articles' URLs here...", label="Articles' URLs to parse (one per line up to 10):", type="text"), gr.Textbox(lines=1, placeholder="Enter your API-key here...", label="API-Key:", type="password"), gr.Textbox(lines=1, placeholder="Enter your Azure OpenAI API base here...", label="Enter Azure API base (Endpoint):", type="text"), gr.Textbox(lines=1, placeholder="Enter your model name here...", label="Deployment ID:", type="text"), gr.Slider(0.0, 1.0, value=0.0, label="Temperature:") ], outputs=[gr.Textbox(label="Input:"), gr.Markdown(label="Output:"), gr.Markdown(label="Total Tokens:")], title="ChatGPT info extraction from URL", description="This tool allows querying the text retrieved from the URL with newspaper3k lib and using MSFT Azure OpenAI's [gpt-3.5-turbo] engine.\nThe URL text can be referenced in the prompt as \"following text\".\nA GPT2 tokenizer is included to ensure that the 1.800 token limit for OpenAI queries is not exceeded. Provide a prompt with your request, the description for the system role, the url for text retrieval, your api-key and temperature to process the text." ) # error capturing in integration as a component error_message = "" try: iface.queue(concurrency_count=20) iface.launch(debug=True) except Exception as e: error_message = "An error occurred: " + str(e) iface.outputs[1].value = error_message