Spaces:
Runtime error
Runtime error
import torch | |
from torch import nn | |
from .feed_forward import FeedForward | |
try: | |
from .cross_attention import PatchedCrossAttention as CrossAttention | |
except: | |
try: | |
from .memory_efficient_cross_attention import MemoryEfficientCrossAttention as CrossAttention | |
except: | |
from .cross_attention import CrossAttention | |
from ..util import checkpoint | |
from ...patches import router | |
class BasicTransformerBlock(nn.Module): | |
def __init__( | |
self,dim,n_heads,d_head,dropout=0.0,context_dim=None, | |
gated_ff=True,checkpoint=True,disable_self_attn=False, | |
): | |
super().__init__() | |
self.disable_self_attn = disable_self_attn | |
# is a self-attention if not self.disable_self_attn | |
self.attn1 = CrossAttention(query_dim=dim,heads=n_heads,dim_head=d_head,dropout=dropout,context_dim=context_dim if self.disable_self_attn else None) | |
self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff) | |
# is self-attn if context is none | |
self.attn2 = CrossAttention(query_dim=dim,context_dim=context_dim,heads=n_heads,dim_head=d_head,dropout=dropout) | |
self.norm1 = nn.LayerNorm(dim) | |
self.norm2 = nn.LayerNorm(dim) | |
self.norm3 = nn.LayerNorm(dim) | |
self.checkpoint = checkpoint | |
def forward(self, x, context=None): | |
return checkpoint(self._forward, (x, context), self.parameters(), self.checkpoint) | |
def _forward(self, x, context=None): | |
x = x + self.attn1(self.norm1(x), context=context if self.disable_self_attn else None) | |
x = x + self.attn2(self.norm2(x), context=context) | |
x = x + self.ff(self.norm3(x)) | |
return x | |
class PatchedBasicTransformerBlock(nn.Module): | |
def __init__( | |
self,dim,n_heads,d_head,dropout=0.0,context_dim=None, | |
gated_ff=True,checkpoint=True,disable_self_attn=False, | |
): | |
super().__init__() | |
self.disable_self_attn = disable_self_attn | |
# is a self-attention if not self.disable_self_attn | |
self.attn1 = CrossAttention(query_dim=dim,heads=n_heads,dim_head=d_head,dropout=dropout,context_dim=context_dim if self.disable_self_attn else None) | |
self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff) | |
# is self-attn if context is none | |
self.attn2 = CrossAttention(query_dim=dim,context_dim=context_dim,heads=n_heads,dim_head=d_head,dropout=dropout) | |
self.norm1 = nn.LayerNorm(dim) | |
self.norm2 = nn.LayerNorm(dim) | |
self.norm3 = nn.LayerNorm(dim) | |
self.checkpoint = checkpoint | |
def forward(self, x, context=None): | |
return checkpoint(self._forward, (x, context), self.parameters(), self.checkpoint) | |
def _forward(self, x, context=None): | |
return router.basic_transformer_forward(self, x, context) | |