Spaces:
No application file
No application file
import os | |
import gc | |
import time | |
import numpy as np | |
import torch | |
import torchvision | |
from PIL import Image | |
from einops import rearrange, repeat | |
from omegaconf import OmegaConf | |
import safetensors.torch | |
from ldm.models.diffusion.ddim import DDIMSampler | |
from ldm.util import instantiate_from_config, ismap | |
from modules import shared, sd_hijack | |
cached_ldsr_model: torch.nn.Module = None | |
# Create LDSR Class | |
class LDSR: | |
def load_model_from_config(self, half_attention): | |
global cached_ldsr_model | |
if shared.opts.ldsr_cached and cached_ldsr_model is not None: | |
print("Loading model from cache") | |
model: torch.nn.Module = cached_ldsr_model | |
else: | |
print(f"Loading model from {self.modelPath}") | |
_, extension = os.path.splitext(self.modelPath) | |
if extension.lower() == ".safetensors": | |
pl_sd = safetensors.torch.load_file(self.modelPath, device="cpu") | |
else: | |
pl_sd = torch.load(self.modelPath, map_location="cpu") | |
sd = pl_sd["state_dict"] if "state_dict" in pl_sd else pl_sd | |
config = OmegaConf.load(self.yamlPath) | |
config.model.target = "ldm.models.diffusion.ddpm.LatentDiffusionV1" | |
model: torch.nn.Module = instantiate_from_config(config.model) | |
model.load_state_dict(sd, strict=False) | |
model = model.to(shared.device) | |
if half_attention: | |
model = model.half() | |
if shared.cmd_opts.opt_channelslast: | |
model = model.to(memory_format=torch.channels_last) | |
sd_hijack.model_hijack.hijack(model) # apply optimization | |
model.eval() | |
if shared.opts.ldsr_cached: | |
cached_ldsr_model = model | |
return {"model": model} | |
def __init__(self, model_path, yaml_path): | |
self.modelPath = model_path | |
self.yamlPath = yaml_path | |
def run(model, selected_path, custom_steps, eta): | |
example = get_cond(selected_path) | |
n_runs = 1 | |
guider = None | |
ckwargs = None | |
ddim_use_x0_pred = False | |
temperature = 1. | |
eta = eta | |
custom_shape = None | |
height, width = example["image"].shape[1:3] | |
split_input = height >= 128 and width >= 128 | |
if split_input: | |
ks = 128 | |
stride = 64 | |
vqf = 4 # | |
model.split_input_params = {"ks": (ks, ks), "stride": (stride, stride), | |
"vqf": vqf, | |
"patch_distributed_vq": True, | |
"tie_braker": False, | |
"clip_max_weight": 0.5, | |
"clip_min_weight": 0.01, | |
"clip_max_tie_weight": 0.5, | |
"clip_min_tie_weight": 0.01} | |
else: | |
if hasattr(model, "split_input_params"): | |
delattr(model, "split_input_params") | |
x_t = None | |
logs = None | |
for _ in range(n_runs): | |
if custom_shape is not None: | |
x_t = torch.randn(1, custom_shape[1], custom_shape[2], custom_shape[3]).to(model.device) | |
x_t = repeat(x_t, '1 c h w -> b c h w', b=custom_shape[0]) | |
logs = make_convolutional_sample(example, model, | |
custom_steps=custom_steps, | |
eta=eta, quantize_x0=False, | |
custom_shape=custom_shape, | |
temperature=temperature, noise_dropout=0., | |
corrector=guider, corrector_kwargs=ckwargs, x_T=x_t, | |
ddim_use_x0_pred=ddim_use_x0_pred | |
) | |
return logs | |
def super_resolution(self, image, steps=100, target_scale=2, half_attention=False): | |
model = self.load_model_from_config(half_attention) | |
# Run settings | |
diffusion_steps = int(steps) | |
eta = 1.0 | |
gc.collect() | |
if torch.cuda.is_available: | |
torch.cuda.empty_cache() | |
im_og = image | |
width_og, height_og = im_og.size | |
# If we can adjust the max upscale size, then the 4 below should be our variable | |
down_sample_rate = target_scale / 4 | |
wd = width_og * down_sample_rate | |
hd = height_og * down_sample_rate | |
width_downsampled_pre = int(np.ceil(wd)) | |
height_downsampled_pre = int(np.ceil(hd)) | |
if down_sample_rate != 1: | |
print( | |
f'Downsampling from [{width_og}, {height_og}] to [{width_downsampled_pre}, {height_downsampled_pre}]') | |
im_og = im_og.resize((width_downsampled_pre, height_downsampled_pre), Image.LANCZOS) | |
else: | |
print(f"Down sample rate is 1 from {target_scale} / 4 (Not downsampling)") | |
# pad width and height to multiples of 64, pads with the edge values of image to avoid artifacts | |
pad_w, pad_h = np.max(((2, 2), np.ceil(np.array(im_og.size) / 64).astype(int)), axis=0) * 64 - im_og.size | |
im_padded = Image.fromarray(np.pad(np.array(im_og), ((0, pad_h), (0, pad_w), (0, 0)), mode='edge')) | |
logs = self.run(model["model"], im_padded, diffusion_steps, eta) | |
sample = logs["sample"] | |
sample = sample.detach().cpu() | |
sample = torch.clamp(sample, -1., 1.) | |
sample = (sample + 1.) / 2. * 255 | |
sample = sample.numpy().astype(np.uint8) | |
sample = np.transpose(sample, (0, 2, 3, 1)) | |
a = Image.fromarray(sample[0]) | |
# remove padding | |
a = a.crop((0, 0) + tuple(np.array(im_og.size) * 4)) | |
del model | |
gc.collect() | |
if torch.cuda.is_available: | |
torch.cuda.empty_cache() | |
return a | |
def get_cond(selected_path): | |
example = {} | |
up_f = 4 | |
c = selected_path.convert('RGB') | |
c = torch.unsqueeze(torchvision.transforms.ToTensor()(c), 0) | |
c_up = torchvision.transforms.functional.resize(c, size=[up_f * c.shape[2], up_f * c.shape[3]], | |
antialias=True) | |
c_up = rearrange(c_up, '1 c h w -> 1 h w c') | |
c = rearrange(c, '1 c h w -> 1 h w c') | |
c = 2. * c - 1. | |
c = c.to(shared.device) | |
example["LR_image"] = c | |
example["image"] = c_up | |
return example | |
def convsample_ddim(model, cond, steps, shape, eta=1.0, callback=None, normals_sequence=None, | |
mask=None, x0=None, quantize_x0=False, temperature=1., score_corrector=None, | |
corrector_kwargs=None, x_t=None | |
): | |
ddim = DDIMSampler(model) | |
bs = shape[0] | |
shape = shape[1:] | |
print(f"Sampling with eta = {eta}; steps: {steps}") | |
samples, intermediates = ddim.sample(steps, batch_size=bs, shape=shape, conditioning=cond, callback=callback, | |
normals_sequence=normals_sequence, quantize_x0=quantize_x0, eta=eta, | |
mask=mask, x0=x0, temperature=temperature, verbose=False, | |
score_corrector=score_corrector, | |
corrector_kwargs=corrector_kwargs, x_t=x_t) | |
return samples, intermediates | |
def make_convolutional_sample(batch, model, custom_steps=None, eta=1.0, quantize_x0=False, custom_shape=None, temperature=1., noise_dropout=0., corrector=None, | |
corrector_kwargs=None, x_T=None, ddim_use_x0_pred=False): | |
log = {} | |
z, c, x, xrec, xc = model.get_input(batch, model.first_stage_key, | |
return_first_stage_outputs=True, | |
force_c_encode=not (hasattr(model, 'split_input_params') | |
and model.cond_stage_key == 'coordinates_bbox'), | |
return_original_cond=True) | |
if custom_shape is not None: | |
z = torch.randn(custom_shape) | |
print(f"Generating {custom_shape[0]} samples of shape {custom_shape[1:]}") | |
z0 = None | |
log["input"] = x | |
log["reconstruction"] = xrec | |
if ismap(xc): | |
log["original_conditioning"] = model.to_rgb(xc) | |
if hasattr(model, 'cond_stage_key'): | |
log[model.cond_stage_key] = model.to_rgb(xc) | |
else: | |
log["original_conditioning"] = xc if xc is not None else torch.zeros_like(x) | |
if model.cond_stage_model: | |
log[model.cond_stage_key] = xc if xc is not None else torch.zeros_like(x) | |
if model.cond_stage_key == 'class_label': | |
log[model.cond_stage_key] = xc[model.cond_stage_key] | |
with model.ema_scope("Plotting"): | |
t0 = time.time() | |
sample, intermediates = convsample_ddim(model, c, steps=custom_steps, shape=z.shape, | |
eta=eta, | |
quantize_x0=quantize_x0, mask=None, x0=z0, | |
temperature=temperature, score_corrector=corrector, corrector_kwargs=corrector_kwargs, | |
x_t=x_T) | |
t1 = time.time() | |
if ddim_use_x0_pred: | |
sample = intermediates['pred_x0'][-1] | |
x_sample = model.decode_first_stage(sample) | |
try: | |
x_sample_noquant = model.decode_first_stage(sample, force_not_quantize=True) | |
log["sample_noquant"] = x_sample_noquant | |
log["sample_diff"] = torch.abs(x_sample_noquant - x_sample) | |
except Exception: | |
pass | |
log["sample"] = x_sample | |
log["time"] = t1 - t0 | |
return log | |