Spaces:
Paused
Paused
add files
Browse files- .gitignore +18 -0
- LICENSE +21 -0
- README.md +1 -1
- app.py +307 -0
- configs/inference/inference.yaml +48 -0
- configs/inference/inference_autoregress.yaml +49 -0
- configs/prompts/default.yaml +16 -0
- configs/training/training.yaml +92 -0
- consisti2v/data/dataset.py +315 -0
- consisti2v/models/rotary_embedding.py +280 -0
- consisti2v/models/videoldm_attention.py +809 -0
- consisti2v/models/videoldm_transformer_blocks.py +564 -0
- consisti2v/models/videoldm_unet.py +1371 -0
- consisti2v/models/videoldm_unet_blocks.py +1159 -0
- consisti2v/pipelines/pipeline_autoregress_animation.py +615 -0
- consisti2v/pipelines/pipeline_conditional_animation.py +695 -0
- consisti2v/utils/frameinit_utils.py +142 -0
- consisti2v/utils/util.py +165 -0
- environment.yaml +28 -0
- requirements.txt +18 -0
- scripts/animate.py +179 -0
- scripts/animate_autoregress.py +185 -0
- train.py +617 -0
.gitignore
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
samples/
|
2 |
+
wandb/
|
3 |
+
outputs/
|
4 |
+
__pycache__/
|
5 |
+
scripts/animate_inter.py
|
6 |
+
scripts/gradio_app.py
|
7 |
+
*.ipynb
|
8 |
+
*.safetensors
|
9 |
+
*.ckpt
|
10 |
+
.ossutil_checkpoint/
|
11 |
+
ossutil_output/
|
12 |
+
debugs/
|
13 |
+
.vscode
|
14 |
+
.env
|
15 |
+
models
|
16 |
+
!*/models
|
17 |
+
.ipynb_checkpoints
|
18 |
+
checkpoints
|
LICENSE
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MIT License
|
2 |
+
|
3 |
+
Copyright (c) 2024 TIGER Lab
|
4 |
+
|
5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
of this software and associated documentation files (the "Software"), to deal
|
7 |
+
in the Software without restriction, including without limitation the rights
|
8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
copies of the Software, and to permit persons to whom the Software is
|
10 |
+
furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
The above copyright notice and this permission notice shall be included in all
|
13 |
+
copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
SOFTWARE.
|
README.md
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
---
|
2 |
title: ConsistI2V
|
3 |
-
emoji:
|
4 |
colorFrom: purple
|
5 |
colorTo: green
|
6 |
sdk: gradio
|
|
|
1 |
---
|
2 |
title: ConsistI2V
|
3 |
+
emoji: 🎥
|
4 |
colorFrom: purple
|
5 |
colorTo: green
|
6 |
sdk: gradio
|
app.py
ADDED
@@ -0,0 +1,307 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import spaces
|
2 |
+
import os
|
3 |
+
import json
|
4 |
+
import torch
|
5 |
+
import random
|
6 |
+
import requests
|
7 |
+
from PIL import Image
|
8 |
+
import numpy as np
|
9 |
+
|
10 |
+
import gradio as gr
|
11 |
+
from datetime import datetime
|
12 |
+
|
13 |
+
import torchvision.transforms as T
|
14 |
+
|
15 |
+
from diffusers import DDIMScheduler
|
16 |
+
from diffusers.utils.import_utils import is_xformers_available
|
17 |
+
from consisti2v.pipelines.pipeline_conditional_animation import ConditionalAnimationPipeline
|
18 |
+
from consisti2v.utils.util import save_videos_grid
|
19 |
+
from omegaconf import OmegaConf
|
20 |
+
|
21 |
+
|
22 |
+
sample_idx = 0
|
23 |
+
scheduler_dict = {
|
24 |
+
"DDIM": DDIMScheduler,
|
25 |
+
}
|
26 |
+
|
27 |
+
css = """
|
28 |
+
.toolbutton {
|
29 |
+
margin-buttom: 0em 0em 0em 0em;
|
30 |
+
max-width: 2.5em;
|
31 |
+
min-width: 2.5em !important;
|
32 |
+
height: 2.5em;
|
33 |
+
}
|
34 |
+
"""
|
35 |
+
|
36 |
+
class AnimateController:
|
37 |
+
def __init__(self):
|
38 |
+
|
39 |
+
# config dirs
|
40 |
+
self.basedir = os.getcwd()
|
41 |
+
self.savedir = os.path.join(self.basedir, "samples/Gradio", datetime.now().strftime("%Y-%m-%dT%H-%M-%S"))
|
42 |
+
self.savedir_sample = os.path.join(self.savedir, "sample")
|
43 |
+
os.makedirs(self.savedir, exist_ok=True)
|
44 |
+
|
45 |
+
self.image_resolution = (256, 256)
|
46 |
+
# config models
|
47 |
+
self.pipeline = ConditionalAnimationPipeline.from_pretrained("TIGER-Lab/ConsistI2V", torch_dtype=torch.float16,)
|
48 |
+
self.pipeline.to("cuda")
|
49 |
+
|
50 |
+
def update_textbox_and_save_image(self, input_image, height_slider, width_slider, center_crop):
|
51 |
+
pil_image = Image.fromarray(input_image.astype(np.uint8)).convert("RGB")
|
52 |
+
img_path = os.path.join(self.savedir, "input_image.png")
|
53 |
+
pil_image.save(img_path)
|
54 |
+
self.image_resolution = pil_image.size
|
55 |
+
pil_image = pil_image.resize((width_slider, height_slider))
|
56 |
+
if center_crop:
|
57 |
+
width, height = width_slider, height_slider
|
58 |
+
aspect_ratio = width / height
|
59 |
+
if aspect_ratio > 16 / 10:
|
60 |
+
pil_image = pil_image.crop((int((width - height * 16 / 10) / 2), 0, int((width + height * 16 / 10) / 2), height))
|
61 |
+
elif aspect_ratio < 16 / 10:
|
62 |
+
pil_image = pil_image.crop((0, int((height - width * 10 / 16) / 2), width, int((height + width * 10 / 16) / 2)))
|
63 |
+
return gr.Textbox.update(value=img_path), gr.Image.update(value=np.array(pil_image))
|
64 |
+
|
65 |
+
@spaces.GPU
|
66 |
+
def animate(
|
67 |
+
self,
|
68 |
+
prompt_textbox,
|
69 |
+
negative_prompt_textbox,
|
70 |
+
input_image_path,
|
71 |
+
sampler_dropdown,
|
72 |
+
sample_step_slider,
|
73 |
+
width_slider,
|
74 |
+
height_slider,
|
75 |
+
txt_cfg_scale_slider,
|
76 |
+
img_cfg_scale_slider,
|
77 |
+
center_crop,
|
78 |
+
frame_stride,
|
79 |
+
use_frameinit,
|
80 |
+
frame_init_noise_level,
|
81 |
+
seed_textbox
|
82 |
+
):
|
83 |
+
if self.pipeline is None:
|
84 |
+
raise gr.Error(f"Please select a pretrained pipeline path.")
|
85 |
+
if input_image_path == "":
|
86 |
+
raise gr.Error(f"Please upload an input image.")
|
87 |
+
if (not center_crop) and (width_slider % 8 != 0 or height_slider % 8 != 0):
|
88 |
+
raise gr.Error(f"`height` and `width` have to be divisible by 8 but are {height_slider} and {width_slider}.")
|
89 |
+
if center_crop and (width_slider % 8 != 0 or height_slider % 8 != 0):
|
90 |
+
raise gr.Error(f"`height` and `width` (after cropping) have to be divisible by 8 but are {height_slider} and {width_slider}.")
|
91 |
+
|
92 |
+
if is_xformers_available() and int(torch.__version__.split(".")[0]) < 2: self.pipeline.unet.enable_xformers_memory_efficient_attention()
|
93 |
+
|
94 |
+
if seed_textbox != -1 and seed_textbox != "": torch.manual_seed(int(seed_textbox))
|
95 |
+
else: torch.seed()
|
96 |
+
seed = torch.initial_seed()
|
97 |
+
|
98 |
+
if input_image_path.startswith("http://") or input_image_path.startswith("https://"):
|
99 |
+
first_frame = Image.open(requests.get(input_image_path, stream=True).raw).convert('RGB')
|
100 |
+
else:
|
101 |
+
first_frame = Image.open(input_image_path).convert('RGB')
|
102 |
+
|
103 |
+
original_width, original_height = first_frame.size
|
104 |
+
|
105 |
+
if not center_crop:
|
106 |
+
img_transform = T.Compose([
|
107 |
+
T.ToTensor(),
|
108 |
+
T.Resize((height_slider, width_slider), antialias=None),
|
109 |
+
T.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True),
|
110 |
+
])
|
111 |
+
else:
|
112 |
+
aspect_ratio = original_width / original_height
|
113 |
+
crop_aspect_ratio = width_slider / height_slider
|
114 |
+
if aspect_ratio > crop_aspect_ratio:
|
115 |
+
center_crop_width = int(crop_aspect_ratio * original_height)
|
116 |
+
center_crop_height = original_height
|
117 |
+
elif aspect_ratio < crop_aspect_ratio:
|
118 |
+
center_crop_width = original_width
|
119 |
+
center_crop_height = int(original_width / crop_aspect_ratio)
|
120 |
+
else:
|
121 |
+
center_crop_width = original_width
|
122 |
+
center_crop_height = original_height
|
123 |
+
img_transform = T.Compose([
|
124 |
+
T.ToTensor(),
|
125 |
+
T.CenterCrop((center_crop_height, center_crop_width)),
|
126 |
+
T.Resize((height_slider, width_slider), antialias=None),
|
127 |
+
T.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True),
|
128 |
+
])
|
129 |
+
|
130 |
+
first_frame = img_transform(first_frame).unsqueeze(0)
|
131 |
+
first_frame = first_frame.to("cuda")
|
132 |
+
|
133 |
+
if use_frameinit:
|
134 |
+
self.pipeline.init_filter(
|
135 |
+
width = width_slider,
|
136 |
+
height = height_slider,
|
137 |
+
video_length = 16,
|
138 |
+
filter_params = OmegaConf.create({'method': 'gaussian', 'd_s': 0.25, 'd_t': 0.25,})
|
139 |
+
)
|
140 |
+
|
141 |
+
|
142 |
+
sample = self.pipeline(
|
143 |
+
prompt_textbox,
|
144 |
+
negative_prompt = negative_prompt_textbox,
|
145 |
+
first_frames = first_frame,
|
146 |
+
num_inference_steps = sample_step_slider,
|
147 |
+
guidance_scale_txt = txt_cfg_scale_slider,
|
148 |
+
guidance_scale_img = img_cfg_scale_slider,
|
149 |
+
width = width_slider,
|
150 |
+
height = height_slider,
|
151 |
+
video_length = 16,
|
152 |
+
noise_sampling_method = "pyoco_mixed",
|
153 |
+
noise_alpha = 1.0,
|
154 |
+
frame_stride = frame_stride,
|
155 |
+
use_frameinit = use_frameinit,
|
156 |
+
frameinit_noise_level = frame_init_noise_level,
|
157 |
+
camera_motion = None,
|
158 |
+
).videos
|
159 |
+
|
160 |
+
global sample_idx
|
161 |
+
sample_idx += 1
|
162 |
+
save_sample_path = os.path.join(self.savedir_sample, f"{sample_idx}.mp4")
|
163 |
+
save_videos_grid(sample, save_sample_path, format="mp4")
|
164 |
+
|
165 |
+
sample_config = {
|
166 |
+
"prompt": prompt_textbox,
|
167 |
+
"n_prompt": negative_prompt_textbox,
|
168 |
+
"first_frame_path": input_image_path,
|
169 |
+
"sampler": sampler_dropdown,
|
170 |
+
"num_inference_steps": sample_step_slider,
|
171 |
+
"guidance_scale_text": txt_cfg_scale_slider,
|
172 |
+
"guidance_scale_image": img_cfg_scale_slider,
|
173 |
+
"width": width_slider,
|
174 |
+
"height": height_slider,
|
175 |
+
"video_length": 8,
|
176 |
+
"seed": seed
|
177 |
+
}
|
178 |
+
json_str = json.dumps(sample_config, indent=4)
|
179 |
+
with open(os.path.join(self.savedir, "logs.json"), "a") as f:
|
180 |
+
f.write(json_str)
|
181 |
+
f.write("\n\n")
|
182 |
+
|
183 |
+
return gr.Video.update(value=save_sample_path)
|
184 |
+
|
185 |
+
|
186 |
+
controller = AnimateController()
|
187 |
+
|
188 |
+
|
189 |
+
def ui():
|
190 |
+
with gr.Blocks(css=css) as demo:
|
191 |
+
gr.Markdown(
|
192 |
+
"""
|
193 |
+
# ConsistI2V Text+Image to Video Generation
|
194 |
+
Input image will be used as the first frame of the video. Text prompts will be used to control the output video content.
|
195 |
+
"""
|
196 |
+
)
|
197 |
+
|
198 |
+
with gr.Column(variant="panel"):
|
199 |
+
gr.Markdown(
|
200 |
+
"""
|
201 |
+
- Input image can be specified using the "Input Image Path/URL" text box (this can be either a local image path or an image URL) or uploaded by clicking or dragging the image to the "Input Image" box. The uploaded image will be temporarily stored in the "samples/Gradio" folder under the project root folder.
|
202 |
+
- Input image can be resized and/or center cropped to a given resolution by adjusting the "Width" and "Height" sliders. It is recommended to use the same resolution as the training resolution (256x256).
|
203 |
+
- After setting the input image path or changed the width/height of the input image, press the "Preview" button to visualize the resized input image.
|
204 |
+
"""
|
205 |
+
)
|
206 |
+
|
207 |
+
with gr.Row():
|
208 |
+
prompt_textbox = gr.Textbox(label="Prompt", lines=2)
|
209 |
+
negative_prompt_textbox = gr.Textbox(label="Negative prompt", lines=2)
|
210 |
+
|
211 |
+
with gr.Row().style(equal_height=False):
|
212 |
+
with gr.Column():
|
213 |
+
with gr.Row():
|
214 |
+
sampler_dropdown = gr.Dropdown(label="Sampling method", choices=list(scheduler_dict.keys()), value=list(scheduler_dict.keys())[0])
|
215 |
+
sample_step_slider = gr.Slider(label="Sampling steps", value=50, minimum=10, maximum=250, step=1)
|
216 |
+
|
217 |
+
with gr.Row():
|
218 |
+
center_crop = gr.Checkbox(label="Center Crop the Image", value=True)
|
219 |
+
width_slider = gr.Slider(label="Width", value=256, minimum=0, maximum=512, step=64)
|
220 |
+
height_slider = gr.Slider(label="Height", value=256, minimum=0, maximum=512, step=64)
|
221 |
+
with gr.Row():
|
222 |
+
txt_cfg_scale_slider = gr.Slider(label="Text CFG Scale", value=7.5, minimum=1.0, maximum=20.0, step=0.5)
|
223 |
+
img_cfg_scale_slider = gr.Slider(label="Image CFG Scale", value=1.0, minimum=1.0, maximum=20.0, step=0.5)
|
224 |
+
frame_stride = gr.Slider(label="Frame Stride", value=3, minimum=1, maximum=5, step=1)
|
225 |
+
|
226 |
+
with gr.Row():
|
227 |
+
use_frameinit = gr.Checkbox(label="Enable FrameInit", value=True)
|
228 |
+
frameinit_noise_level = gr.Slider(label="FrameInit Noise Level", value=850, minimum=1, maximum=999, step=1)
|
229 |
+
|
230 |
+
|
231 |
+
seed_textbox = gr.Textbox(label="Seed", value=-1)
|
232 |
+
seed_button = gr.Button(value="\U0001F3B2", elem_classes="toolbutton")
|
233 |
+
seed_button.click(fn=lambda: gr.Textbox.update(value=random.randint(1, 1e8)), inputs=[], outputs=[seed_textbox])
|
234 |
+
|
235 |
+
|
236 |
+
|
237 |
+
generate_button = gr.Button(value="Generate", variant='primary')
|
238 |
+
|
239 |
+
with gr.Column():
|
240 |
+
with gr.Row():
|
241 |
+
input_image_path = gr.Textbox(label="Input Image Path/URL", lines=1, scale=10, info="Press Enter or the Preview button to confirm the input image.")
|
242 |
+
preview_button = gr.Button(value="Preview")
|
243 |
+
|
244 |
+
with gr.Row():
|
245 |
+
input_image = gr.Image(label="Input Image", interactive=True)
|
246 |
+
input_image.upload(fn=controller.update_textbox_and_save_image, inputs=[input_image, height_slider, width_slider, center_crop], outputs=[input_image_path, input_image])
|
247 |
+
result_video = gr.Video(label="Generated Animation", interactive=False, autoplay=True)
|
248 |
+
|
249 |
+
def update_and_resize_image(input_image_path, height_slider, width_slider, center_crop):
|
250 |
+
if input_image_path.startswith("http://") or input_image_path.startswith("https://"):
|
251 |
+
pil_image = Image.open(requests.get(input_image_path, stream=True).raw).convert('RGB')
|
252 |
+
else:
|
253 |
+
pil_image = Image.open(input_image_path).convert('RGB')
|
254 |
+
controller.image_resolution = pil_image.size
|
255 |
+
original_width, original_height = pil_image.size
|
256 |
+
|
257 |
+
if center_crop:
|
258 |
+
crop_aspect_ratio = width_slider / height_slider
|
259 |
+
aspect_ratio = original_width / original_height
|
260 |
+
if aspect_ratio > crop_aspect_ratio:
|
261 |
+
new_width = int(crop_aspect_ratio * original_height)
|
262 |
+
left = (original_width - new_width) / 2
|
263 |
+
top = 0
|
264 |
+
right = left + new_width
|
265 |
+
bottom = original_height
|
266 |
+
pil_image = pil_image.crop((left, top, right, bottom))
|
267 |
+
elif aspect_ratio < crop_aspect_ratio:
|
268 |
+
new_height = int(original_width / crop_aspect_ratio)
|
269 |
+
top = (original_height - new_height) / 2
|
270 |
+
left = 0
|
271 |
+
right = original_width
|
272 |
+
bottom = top + new_height
|
273 |
+
pil_image = pil_image.crop((left, top, right, bottom))
|
274 |
+
|
275 |
+
pil_image = pil_image.resize((width_slider, height_slider))
|
276 |
+
return gr.Image.update(value=np.array(pil_image))
|
277 |
+
|
278 |
+
preview_button.click(fn=update_and_resize_image, inputs=[input_image_path, height_slider, width_slider, center_crop], outputs=[input_image])
|
279 |
+
input_image_path.submit(fn=update_and_resize_image, inputs=[input_image_path, height_slider, width_slider, center_crop], outputs=[input_image])
|
280 |
+
|
281 |
+
generate_button.click(
|
282 |
+
fn=controller.animate,
|
283 |
+
inputs=[
|
284 |
+
prompt_textbox,
|
285 |
+
negative_prompt_textbox,
|
286 |
+
input_image_path,
|
287 |
+
sampler_dropdown,
|
288 |
+
sample_step_slider,
|
289 |
+
width_slider,
|
290 |
+
height_slider,
|
291 |
+
txt_cfg_scale_slider,
|
292 |
+
img_cfg_scale_slider,
|
293 |
+
center_crop,
|
294 |
+
frame_stride,
|
295 |
+
use_frameinit,
|
296 |
+
frameinit_noise_level,
|
297 |
+
seed_textbox,
|
298 |
+
],
|
299 |
+
outputs=[result_video]
|
300 |
+
)
|
301 |
+
|
302 |
+
return demo
|
303 |
+
|
304 |
+
|
305 |
+
if __name__ == "__main__":
|
306 |
+
demo = ui()
|
307 |
+
demo.launch(share=True)
|
configs/inference/inference.yaml
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
output_dir: "samples/inference"
|
2 |
+
output_name: "i2v"
|
3 |
+
|
4 |
+
pretrained_model_path: "TIGER-Lab/ConsistI2V"
|
5 |
+
unet_path: null
|
6 |
+
unet_ckpt_prefix: "module."
|
7 |
+
pipeline_pretrained_path: null
|
8 |
+
|
9 |
+
sampling_kwargs:
|
10 |
+
height: 256
|
11 |
+
width: 256
|
12 |
+
n_frames: 16
|
13 |
+
steps: 50
|
14 |
+
ddim_eta: 0.0
|
15 |
+
guidance_scale_txt: 7.5
|
16 |
+
guidance_scale_img: 1.0
|
17 |
+
guidance_rescale: 0.0
|
18 |
+
num_videos_per_prompt: 1
|
19 |
+
frame_stride: 3
|
20 |
+
|
21 |
+
unet_additional_kwargs:
|
22 |
+
variant: null
|
23 |
+
n_temp_heads: 8
|
24 |
+
augment_temporal_attention: true
|
25 |
+
temp_pos_embedding: "rotary" # "rotary" or "sinusoidal"
|
26 |
+
first_frame_condition_mode: "concat"
|
27 |
+
use_frame_stride_condition: true
|
28 |
+
noise_sampling_method: "pyoco_mixed" # "vanilla" or "pyoco_mixed" or "pyoco_progressive"
|
29 |
+
noise_alpha: 1.0
|
30 |
+
|
31 |
+
noise_scheduler_kwargs:
|
32 |
+
beta_start: 0.00085
|
33 |
+
beta_end: 0.012
|
34 |
+
beta_schedule: "linear"
|
35 |
+
steps_offset: 1
|
36 |
+
clip_sample: false
|
37 |
+
rescale_betas_zero_snr: false # true if using zero terminal snr
|
38 |
+
timestep_spacing: "leading" # "trailing" if using zero terminal snr
|
39 |
+
prediction_type: "epsilon" # "v_prediction" if using zero terminal snr
|
40 |
+
|
41 |
+
frameinit_kwargs:
|
42 |
+
enable: true
|
43 |
+
camera_motion: null
|
44 |
+
noise_level: 850
|
45 |
+
filter_params:
|
46 |
+
method: 'gaussian'
|
47 |
+
d_s: 0.25
|
48 |
+
d_t: 0.25
|
configs/inference/inference_autoregress.yaml
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
output_dir: "samples/inference"
|
2 |
+
output_name: "long_video"
|
3 |
+
|
4 |
+
pretrained_model_path: "TIGER-Lab/ConsistI2V"
|
5 |
+
unet_path: null
|
6 |
+
unet_ckpt_prefix: "module."
|
7 |
+
pipeline_pretrained_path: null
|
8 |
+
|
9 |
+
sampling_kwargs:
|
10 |
+
height: 256
|
11 |
+
width: 256
|
12 |
+
n_frames: 16
|
13 |
+
steps: 50
|
14 |
+
ddim_eta: 0.0
|
15 |
+
guidance_scale_txt: 7.5
|
16 |
+
guidance_scale_img: 1.0
|
17 |
+
guidance_rescale: 0.0
|
18 |
+
num_videos_per_prompt: 1
|
19 |
+
frame_stride: 3
|
20 |
+
autoregress_steps: 3
|
21 |
+
|
22 |
+
unet_additional_kwargs:
|
23 |
+
variant: null
|
24 |
+
n_temp_heads: 8
|
25 |
+
augment_temporal_attention: true
|
26 |
+
temp_pos_embedding: "rotary" # "rotary" or "sinusoidal"
|
27 |
+
first_frame_condition_mode: "concat"
|
28 |
+
use_frame_stride_condition: true
|
29 |
+
noise_sampling_method: "pyoco_mixed" # "vanilla" or "pyoco_mixed" or "pyoco_progressive"
|
30 |
+
noise_alpha: 1.0
|
31 |
+
|
32 |
+
noise_scheduler_kwargs:
|
33 |
+
beta_start: 0.00085
|
34 |
+
beta_end: 0.012
|
35 |
+
beta_schedule: "linear"
|
36 |
+
steps_offset: 1
|
37 |
+
clip_sample: false
|
38 |
+
rescale_betas_zero_snr: false # true if using zero terminal snr
|
39 |
+
timestep_spacing: "leading" # "trailing" if using zero terminal snr
|
40 |
+
prediction_type: "epsilon" # "v_prediction" if using zero terminal snr
|
41 |
+
|
42 |
+
|
43 |
+
frameinit_kwargs:
|
44 |
+
enable: true
|
45 |
+
noise_level: 850
|
46 |
+
filter_params:
|
47 |
+
method: 'gaussian'
|
48 |
+
d_s: 0.25
|
49 |
+
d_t: 0.25
|
configs/prompts/default.yaml
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
seeds: random
|
2 |
+
|
3 |
+
prompts:
|
4 |
+
- "timelapse at the snow land with aurora in the sky."
|
5 |
+
- "fireworks."
|
6 |
+
- "clown fish swimming through the coral reef."
|
7 |
+
- "melting ice cream dripping down the cone."
|
8 |
+
|
9 |
+
n_prompts:
|
10 |
+
- ""
|
11 |
+
|
12 |
+
path_to_first_frames:
|
13 |
+
- "assets/example/example_01.png"
|
14 |
+
- "assets/example/example_02.png"
|
15 |
+
- "assets/example/example_03.png"
|
16 |
+
- "assets/example/example_04.png"
|
configs/training/training.yaml
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
output_dir: "checkpoints"
|
2 |
+
pretrained_model_path: "stabilityai/stable-diffusion-2-1-base"
|
3 |
+
|
4 |
+
noise_scheduler_kwargs:
|
5 |
+
num_train_timesteps: 1000
|
6 |
+
beta_start: 0.00085
|
7 |
+
beta_end: 0.012
|
8 |
+
beta_schedule: "linear"
|
9 |
+
steps_offset: 1
|
10 |
+
clip_sample: false
|
11 |
+
rescale_betas_zero_snr: false # true if using zero terminal snr
|
12 |
+
timestep_spacing: "leading" # "trailing" if using zero terminal snr
|
13 |
+
prediction_type: "epsilon" # "v_prediction" if using zero terminal snr
|
14 |
+
|
15 |
+
train_data:
|
16 |
+
dataset: "joint"
|
17 |
+
pexels_config:
|
18 |
+
enable: false
|
19 |
+
json_path: null
|
20 |
+
caption_json_path: null
|
21 |
+
video_folder: null
|
22 |
+
webvid_config:
|
23 |
+
enable: true
|
24 |
+
json_path: "/path/to/webvid/annotation"
|
25 |
+
video_folder: "/path/to/webvid/data"
|
26 |
+
sample_size: 256
|
27 |
+
sample_duration: null
|
28 |
+
sample_fps: null
|
29 |
+
sample_stride: [1, 5]
|
30 |
+
sample_n_frames: 16
|
31 |
+
|
32 |
+
validation_data:
|
33 |
+
prompts:
|
34 |
+
- "timelapse at the snow land with aurora in the sky."
|
35 |
+
- "fireworks."
|
36 |
+
- "clown fish swimming through the coral reef."
|
37 |
+
- "melting ice cream dripping down the cone."
|
38 |
+
|
39 |
+
path_to_first_frames:
|
40 |
+
- "assets/example/example_01.jpg"
|
41 |
+
- "assets/example/example_02.jpg"
|
42 |
+
- "assets/example/example_03.jpg"
|
43 |
+
- "assets/example/example_04.jpg"
|
44 |
+
|
45 |
+
num_inference_steps: 50
|
46 |
+
ddim_eta: 0.0
|
47 |
+
guidance_scale_txt: 7.5
|
48 |
+
guidance_scale_img: 1.0
|
49 |
+
guidance_rescale: 0.0
|
50 |
+
frame_stride: 3
|
51 |
+
|
52 |
+
trainable_modules:
|
53 |
+
- "all"
|
54 |
+
# - "conv3ds."
|
55 |
+
# - "tempo_attns."
|
56 |
+
|
57 |
+
resume_from_checkpoint: null
|
58 |
+
|
59 |
+
unet_additional_kwargs:
|
60 |
+
variant: null
|
61 |
+
n_temp_heads: 8
|
62 |
+
augment_temporal_attention: true
|
63 |
+
temp_pos_embedding: "rotary" # "rotary" or "sinusoidal"
|
64 |
+
first_frame_condition_mode: "concat"
|
65 |
+
use_frame_stride_condition: true
|
66 |
+
noise_sampling_method: "pyoco_mixed" # "vanilla" or "pyoco_mixed" or "pyoco_progressive"
|
67 |
+
noise_alpha: 1.0
|
68 |
+
|
69 |
+
cfg_random_null_text_ratio: 0.1
|
70 |
+
cfg_random_null_img_ratio: 0.1
|
71 |
+
|
72 |
+
use_ema: false
|
73 |
+
ema_decay: 0.9999
|
74 |
+
|
75 |
+
learning_rate: 5.e-5
|
76 |
+
train_batch_size: 3
|
77 |
+
gradient_accumulation_steps: 1
|
78 |
+
max_grad_norm: 0.5
|
79 |
+
|
80 |
+
max_train_epoch: -1
|
81 |
+
max_train_steps: 200000
|
82 |
+
checkpointing_epochs: -1
|
83 |
+
checkpointing_steps: 2000
|
84 |
+
validation_steps: 1000
|
85 |
+
|
86 |
+
seed: 42
|
87 |
+
mixed_precision: "bf16"
|
88 |
+
num_workers: 32
|
89 |
+
enable_xformers_memory_efficient_attention: true
|
90 |
+
|
91 |
+
is_image: false
|
92 |
+
is_debug: false
|
consisti2v/data/dataset.py
ADDED
@@ -0,0 +1,315 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os, io, csv, math, random
|
2 |
+
import json
|
3 |
+
import numpy as np
|
4 |
+
from einops import rearrange
|
5 |
+
from decord import VideoReader
|
6 |
+
|
7 |
+
import torch
|
8 |
+
import torchvision.transforms as transforms
|
9 |
+
from torch.utils.data.dataset import Dataset
|
10 |
+
|
11 |
+
from diffusers.utils import logging
|
12 |
+
|
13 |
+
logger = logging.get_logger(__name__)
|
14 |
+
|
15 |
+
class WebVid10M(Dataset):
|
16 |
+
def __init__(
|
17 |
+
self,
|
18 |
+
json_path, video_folder=None,
|
19 |
+
sample_size=256, sample_stride=4, sample_n_frames=16,
|
20 |
+
is_image=False,
|
21 |
+
**kwargs,
|
22 |
+
):
|
23 |
+
logger.info(f"loading annotations from {json_path} ...")
|
24 |
+
with open(json_path, 'rb') as json_file:
|
25 |
+
json_list = list(json_file)
|
26 |
+
self.dataset = [json.loads(json_str) for json_str in json_list]
|
27 |
+
self.length = len(self.dataset)
|
28 |
+
logger.info(f"data scale: {self.length}")
|
29 |
+
|
30 |
+
self.video_folder = video_folder
|
31 |
+
self.sample_stride = sample_stride if isinstance(sample_stride, int) else tuple(sample_stride)
|
32 |
+
self.sample_n_frames = sample_n_frames
|
33 |
+
self.is_image = is_image
|
34 |
+
|
35 |
+
sample_size = tuple(sample_size) if not isinstance(sample_size, int) else (sample_size, sample_size)
|
36 |
+
self.pixel_transforms = transforms.Compose([
|
37 |
+
transforms.RandomHorizontalFlip(),
|
38 |
+
transforms.Resize(sample_size[0], antialias=None),
|
39 |
+
transforms.CenterCrop(sample_size),
|
40 |
+
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True),
|
41 |
+
])
|
42 |
+
|
43 |
+
def get_batch(self, idx):
|
44 |
+
video_dict = self.dataset[idx]
|
45 |
+
video_relative_path, name = video_dict['file'], video_dict['text']
|
46 |
+
|
47 |
+
if self.video_folder is not None:
|
48 |
+
if video_relative_path[0] == '/':
|
49 |
+
video_dir = os.path.join(self.video_folder, os.path.basename(video_relative_path))
|
50 |
+
else:
|
51 |
+
video_dir = os.path.join(self.video_folder, video_relative_path)
|
52 |
+
else:
|
53 |
+
video_dir = video_relative_path
|
54 |
+
video_reader = VideoReader(video_dir)
|
55 |
+
video_length = len(video_reader)
|
56 |
+
|
57 |
+
if not self.is_image:
|
58 |
+
if isinstance(self.sample_stride, int):
|
59 |
+
stride = self.sample_stride
|
60 |
+
elif isinstance(self.sample_stride, tuple):
|
61 |
+
stride = random.randint(self.sample_stride[0], self.sample_stride[1])
|
62 |
+
clip_length = min(video_length, (self.sample_n_frames - 1) * stride + 1)
|
63 |
+
start_idx = random.randint(0, video_length - clip_length)
|
64 |
+
batch_index = np.linspace(start_idx, start_idx + clip_length - 1, self.sample_n_frames, dtype=int)
|
65 |
+
else:
|
66 |
+
frame_difference = random.randint(2, self.sample_n_frames)
|
67 |
+
clip_length = min(video_length, (frame_difference - 1) * self.sample_stride + 1)
|
68 |
+
start_idx = random.randint(0, video_length - clip_length)
|
69 |
+
batch_index = [start_idx, start_idx + clip_length - 1]
|
70 |
+
|
71 |
+
pixel_values = torch.from_numpy(video_reader.get_batch(batch_index).asnumpy()).permute(0, 3, 1, 2).contiguous()
|
72 |
+
pixel_values = pixel_values / 255.
|
73 |
+
del video_reader
|
74 |
+
|
75 |
+
return pixel_values, name
|
76 |
+
|
77 |
+
def __len__(self):
|
78 |
+
return self.length
|
79 |
+
|
80 |
+
def __getitem__(self, idx):
|
81 |
+
while True:
|
82 |
+
try:
|
83 |
+
pixel_values, name = self.get_batch(idx)
|
84 |
+
break
|
85 |
+
|
86 |
+
except Exception as e:
|
87 |
+
idx = random.randint(0, self.length-1)
|
88 |
+
|
89 |
+
pixel_values = self.pixel_transforms(pixel_values)
|
90 |
+
sample = dict(pixel_values=pixel_values, text=name)
|
91 |
+
return sample
|
92 |
+
|
93 |
+
|
94 |
+
class Pexels(Dataset):
|
95 |
+
def __init__(
|
96 |
+
self,
|
97 |
+
json_path, caption_json_path, video_folder=None,
|
98 |
+
sample_size=256, sample_duration=1, sample_fps=8,
|
99 |
+
is_image=False,
|
100 |
+
**kwargs,
|
101 |
+
):
|
102 |
+
logger.info(f"loading captions from {caption_json_path} ...")
|
103 |
+
with open(caption_json_path, 'rb') as caption_json_file:
|
104 |
+
caption_json_list = list(caption_json_file)
|
105 |
+
self.caption_dict = {json.loads(json_str)['id']: json.loads(json_str)['text'] for json_str in caption_json_list}
|
106 |
+
|
107 |
+
logger.info(f"loading annotations from {json_path} ...")
|
108 |
+
with open(json_path, 'rb') as json_file:
|
109 |
+
json_list = list(json_file)
|
110 |
+
dataset = [json.loads(json_str) for json_str in json_list]
|
111 |
+
|
112 |
+
self.dataset = []
|
113 |
+
for data in dataset:
|
114 |
+
data['text'] = self.caption_dict[data['id']]
|
115 |
+
if data['height'] / data['width'] < 0.625:
|
116 |
+
self.dataset.append(data)
|
117 |
+
self.length = len(self.dataset)
|
118 |
+
logger.info(f"data scale: {self.length}")
|
119 |
+
|
120 |
+
self.video_folder = video_folder
|
121 |
+
self.sample_duration = sample_duration
|
122 |
+
self.sample_fps = sample_fps
|
123 |
+
self.sample_n_frames = sample_duration * sample_fps
|
124 |
+
self.is_image = is_image
|
125 |
+
|
126 |
+
sample_size = tuple(sample_size) if not isinstance(sample_size, int) else (sample_size, sample_size)
|
127 |
+
self.pixel_transforms = transforms.Compose([
|
128 |
+
transforms.RandomHorizontalFlip(),
|
129 |
+
transforms.Resize(sample_size[0], antialias=None),
|
130 |
+
transforms.CenterCrop(sample_size),
|
131 |
+
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True),
|
132 |
+
])
|
133 |
+
|
134 |
+
def get_batch(self, idx):
|
135 |
+
video_dict = self.dataset[idx]
|
136 |
+
video_relative_path, name = video_dict['file'], video_dict['text']
|
137 |
+
fps = video_dict['fps']
|
138 |
+
|
139 |
+
if self.video_folder is not None:
|
140 |
+
if video_relative_path[0] == '/':
|
141 |
+
video_dir = os.path.join(self.video_folder, os.path.basename(video_relative_path))
|
142 |
+
else:
|
143 |
+
video_dir = os.path.join(self.video_folder, video_relative_path)
|
144 |
+
else:
|
145 |
+
video_dir = video_relative_path
|
146 |
+
video_reader = VideoReader(video_dir)
|
147 |
+
video_length = len(video_reader)
|
148 |
+
|
149 |
+
if not self.is_image:
|
150 |
+
clip_length = min(video_length, math.ceil(fps * self.sample_duration))
|
151 |
+
start_idx = random.randint(0, video_length - clip_length)
|
152 |
+
batch_index = np.linspace(start_idx, start_idx + clip_length - 1, self.sample_n_frames, dtype=int)
|
153 |
+
else:
|
154 |
+
frame_difference = random.randint(2, self.sample_n_frames)
|
155 |
+
sample_stride = math.ceil((fps * self.sample_duration) / (self.sample_n_frames - 1) - 1)
|
156 |
+
clip_length = min(video_length, (frame_difference - 1) * sample_stride + 1)
|
157 |
+
start_idx = random.randint(0, video_length - clip_length)
|
158 |
+
batch_index = [start_idx, start_idx + clip_length - 1]
|
159 |
+
|
160 |
+
pixel_values = torch.from_numpy(video_reader.get_batch(batch_index).asnumpy()).permute(0, 3, 1, 2).contiguous()
|
161 |
+
pixel_values = pixel_values / 255.
|
162 |
+
del video_reader
|
163 |
+
|
164 |
+
return pixel_values, name
|
165 |
+
|
166 |
+
def __len__(self):
|
167 |
+
return self.length
|
168 |
+
|
169 |
+
def __getitem__(self, idx):
|
170 |
+
while True:
|
171 |
+
try:
|
172 |
+
pixel_values, name = self.get_batch(idx)
|
173 |
+
break
|
174 |
+
|
175 |
+
except Exception as e:
|
176 |
+
idx = random.randint(0, self.length-1)
|
177 |
+
|
178 |
+
pixel_values = self.pixel_transforms(pixel_values)
|
179 |
+
sample = dict(pixel_values=pixel_values, text=name)
|
180 |
+
return sample
|
181 |
+
|
182 |
+
|
183 |
+
class JointDataset(Dataset):
|
184 |
+
def __init__(
|
185 |
+
self,
|
186 |
+
webvid_config, pexels_config,
|
187 |
+
sample_size=256,
|
188 |
+
sample_duration=None, sample_fps=None, sample_stride=None, sample_n_frames=None,
|
189 |
+
is_image=False,
|
190 |
+
**kwargs,
|
191 |
+
):
|
192 |
+
assert (sample_duration is None and sample_fps is None) or (sample_duration is not None and sample_fps is not None), "sample_duration and sample_fps should be both None or not None"
|
193 |
+
if sample_duration is not None and sample_fps is not None:
|
194 |
+
assert sample_stride is None, "when sample_duration and sample_fps are not None, sample_stride should be None"
|
195 |
+
if sample_stride is not None:
|
196 |
+
assert sample_fps is None and sample_duration is None, "when sample_stride is not None, sample_duration and sample_fps should be both None"
|
197 |
+
|
198 |
+
self.dataset = []
|
199 |
+
|
200 |
+
if pexels_config.enable:
|
201 |
+
logger.info(f"loading pexels dataset")
|
202 |
+
logger.info(f"loading captions from {pexels_config.caption_json_path} ...")
|
203 |
+
with open(pexels_config.caption_json_path, 'rb') as caption_json_file:
|
204 |
+
caption_json_list = list(caption_json_file)
|
205 |
+
self.caption_dict = {json.loads(json_str)['id']: json.loads(json_str)['text'] for json_str in caption_json_list}
|
206 |
+
|
207 |
+
logger.info(f"loading annotations from {pexels_config.json_path} ...")
|
208 |
+
with open(pexels_config.json_path, 'rb') as json_file:
|
209 |
+
json_list = list(json_file)
|
210 |
+
dataset = [json.loads(json_str) for json_str in json_list]
|
211 |
+
|
212 |
+
for data in dataset:
|
213 |
+
data['text'] = self.caption_dict[data['id']]
|
214 |
+
data['dataset'] = 'pexels'
|
215 |
+
if data['height'] / data['width'] < 0.625:
|
216 |
+
self.dataset.append(data)
|
217 |
+
|
218 |
+
if webvid_config.enable:
|
219 |
+
logger.info(f"loading webvid dataset")
|
220 |
+
logger.info(f"loading annotations from {webvid_config.json_path} ...")
|
221 |
+
with open(webvid_config.json_path, 'rb') as json_file:
|
222 |
+
json_list = list(json_file)
|
223 |
+
dataset = [json.loads(json_str) for json_str in json_list]
|
224 |
+
for data in dataset:
|
225 |
+
data['dataset'] = 'webvid'
|
226 |
+
self.dataset.extend(dataset)
|
227 |
+
|
228 |
+
self.length = len(self.dataset)
|
229 |
+
logger.info(f"data scale: {self.length}")
|
230 |
+
|
231 |
+
self.pexels_folder = pexels_config.video_folder
|
232 |
+
self.webvid_folder = webvid_config.video_folder
|
233 |
+
self.sample_duration = sample_duration
|
234 |
+
self.sample_fps = sample_fps
|
235 |
+
self.sample_n_frames = sample_duration * sample_fps if sample_n_frames is None else sample_n_frames
|
236 |
+
self.sample_stride = sample_stride if (sample_stride is None) or (sample_stride is not None and isinstance(sample_stride, int)) else tuple(sample_stride)
|
237 |
+
self.is_image = is_image
|
238 |
+
|
239 |
+
sample_size = tuple(sample_size) if not isinstance(sample_size, int) else (sample_size, sample_size)
|
240 |
+
self.pixel_transforms = transforms.Compose([
|
241 |
+
transforms.RandomHorizontalFlip(),
|
242 |
+
transforms.Resize(sample_size[0], antialias=None),
|
243 |
+
transforms.CenterCrop(sample_size),
|
244 |
+
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True),
|
245 |
+
])
|
246 |
+
|
247 |
+
def get_batch(self, idx):
|
248 |
+
video_dict = self.dataset[idx]
|
249 |
+
video_relative_path, name = video_dict['file'], video_dict['text']
|
250 |
+
|
251 |
+
if video_dict['dataset'] == 'pexels':
|
252 |
+
video_folder = self.pexels_folder
|
253 |
+
elif video_dict['dataset'] == 'webvid':
|
254 |
+
video_folder = self.webvid_folder
|
255 |
+
else:
|
256 |
+
raise NotImplementedError
|
257 |
+
|
258 |
+
if video_folder is not None:
|
259 |
+
if video_relative_path[0] == '/':
|
260 |
+
video_dir = os.path.join(video_folder, os.path.basename(video_relative_path))
|
261 |
+
else:
|
262 |
+
video_dir = os.path.join(video_folder, video_relative_path)
|
263 |
+
else:
|
264 |
+
video_dir = video_relative_path
|
265 |
+
video_reader = VideoReader(video_dir)
|
266 |
+
video_length = len(video_reader)
|
267 |
+
|
268 |
+
stride = None
|
269 |
+
if not self.is_image:
|
270 |
+
if self.sample_duration is not None:
|
271 |
+
fps = video_dict['fps']
|
272 |
+
clip_length = min(video_length, math.ceil(fps * self.sample_duration))
|
273 |
+
elif self.sample_stride is not None:
|
274 |
+
if isinstance(self.sample_stride, int):
|
275 |
+
stride = self.sample_stride
|
276 |
+
elif isinstance(self.sample_stride, tuple):
|
277 |
+
stride = random.randint(self.sample_stride[0], self.sample_stride[1])
|
278 |
+
clip_length = min(video_length, (self.sample_n_frames - 1) * stride + 1)
|
279 |
+
|
280 |
+
start_idx = random.randint(0, video_length - clip_length)
|
281 |
+
batch_index = np.linspace(start_idx, start_idx + clip_length - 1, self.sample_n_frames, dtype=int)
|
282 |
+
|
283 |
+
else:
|
284 |
+
frame_difference = random.randint(2, self.sample_n_frames)
|
285 |
+
if self.sample_duration is not None:
|
286 |
+
fps = video_dict['fps']
|
287 |
+
sample_stride = math.ceil((fps * self.sample_duration) / (self.sample_n_frames - 1) - 1)
|
288 |
+
elif self.sample_stride is not None:
|
289 |
+
sample_stride = self.sample_stride
|
290 |
+
|
291 |
+
clip_length = min(video_length, (frame_difference - 1) * sample_stride + 1)
|
292 |
+
start_idx = random.randint(0, video_length - clip_length)
|
293 |
+
batch_index = [start_idx, start_idx + clip_length - 1]
|
294 |
+
|
295 |
+
pixel_values = torch.from_numpy(video_reader.get_batch(batch_index).asnumpy()).permute(0, 3, 1, 2).contiguous()
|
296 |
+
pixel_values = pixel_values / 255.
|
297 |
+
del video_reader
|
298 |
+
|
299 |
+
return pixel_values, name, stride
|
300 |
+
|
301 |
+
def __len__(self):
|
302 |
+
return self.length
|
303 |
+
|
304 |
+
def __getitem__(self, idx):
|
305 |
+
while True:
|
306 |
+
try:
|
307 |
+
pixel_values, name, stride = self.get_batch(idx)
|
308 |
+
break
|
309 |
+
|
310 |
+
except Exception as e:
|
311 |
+
idx = random.randint(0, self.length-1)
|
312 |
+
|
313 |
+
pixel_values = self.pixel_transforms(pixel_values)
|
314 |
+
sample = dict(pixel_values=pixel_values, text=name, stride=stride)
|
315 |
+
return sample
|
consisti2v/models/rotary_embedding.py
ADDED
@@ -0,0 +1,280 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from math import pi, log
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from torch.nn import Module, ModuleList
|
5 |
+
from torch.cuda.amp import autocast
|
6 |
+
from torch import nn, einsum, broadcast_tensors, Tensor
|
7 |
+
|
8 |
+
from einops import rearrange, repeat
|
9 |
+
|
10 |
+
from beartype import beartype
|
11 |
+
from beartype.typing import Literal, Union, Optional
|
12 |
+
|
13 |
+
# helper functions
|
14 |
+
|
15 |
+
def exists(val):
|
16 |
+
return val is not None
|
17 |
+
|
18 |
+
def default(val, d):
|
19 |
+
return val if exists(val) else d
|
20 |
+
|
21 |
+
# broadcat, as tortoise-tts was using it
|
22 |
+
|
23 |
+
def broadcat(tensors, dim = -1):
|
24 |
+
broadcasted_tensors = broadcast_tensors(*tensors)
|
25 |
+
return torch.cat(broadcasted_tensors, dim = dim)
|
26 |
+
|
27 |
+
# rotary embedding helper functions
|
28 |
+
|
29 |
+
def rotate_half(x):
|
30 |
+
x = rearrange(x, '... (d r) -> ... d r', r = 2)
|
31 |
+
x1, x2 = x.unbind(dim = -1)
|
32 |
+
x = torch.stack((-x2, x1), dim = -1)
|
33 |
+
return rearrange(x, '... d r -> ... (d r)')
|
34 |
+
|
35 |
+
@autocast(enabled = False)
|
36 |
+
def apply_rotary_emb(freqs, t, start_index = 0, scale = 1., seq_dim = -2):
|
37 |
+
if t.ndim == 3:
|
38 |
+
seq_len = t.shape[seq_dim]
|
39 |
+
freqs = freqs[-seq_len:].to(t)
|
40 |
+
|
41 |
+
rot_dim = freqs.shape[-1]
|
42 |
+
end_index = start_index + rot_dim
|
43 |
+
|
44 |
+
assert rot_dim <= t.shape[-1], f'feature dimension {t.shape[-1]} is not of sufficient size to rotate in all the positions {rot_dim}'
|
45 |
+
|
46 |
+
t_left, t, t_right = t[..., :start_index], t[..., start_index:end_index], t[..., end_index:]
|
47 |
+
t = (t * freqs.cos() * scale) + (rotate_half(t) * freqs.sin() * scale)
|
48 |
+
return torch.cat((t_left, t, t_right), dim = -1)
|
49 |
+
|
50 |
+
# learned rotation helpers
|
51 |
+
|
52 |
+
def apply_learned_rotations(rotations, t, start_index = 0, freq_ranges = None):
|
53 |
+
if exists(freq_ranges):
|
54 |
+
rotations = einsum('..., f -> ... f', rotations, freq_ranges)
|
55 |
+
rotations = rearrange(rotations, '... r f -> ... (r f)')
|
56 |
+
|
57 |
+
rotations = repeat(rotations, '... n -> ... (n r)', r = 2)
|
58 |
+
return apply_rotary_emb(rotations, t, start_index = start_index)
|
59 |
+
|
60 |
+
# classes
|
61 |
+
|
62 |
+
class RotaryEmbedding(Module):
|
63 |
+
@beartype
|
64 |
+
def __init__(
|
65 |
+
self,
|
66 |
+
dim,
|
67 |
+
custom_freqs: Optional[Tensor] = None,
|
68 |
+
freqs_for: Union[
|
69 |
+
Literal['lang'],
|
70 |
+
Literal['pixel'],
|
71 |
+
Literal['constant']
|
72 |
+
] = 'lang',
|
73 |
+
theta = 10000,
|
74 |
+
max_freq = 10,
|
75 |
+
num_freqs = 1,
|
76 |
+
learned_freq = False,
|
77 |
+
use_xpos = False,
|
78 |
+
xpos_scale_base = 512,
|
79 |
+
interpolate_factor = 1.,
|
80 |
+
theta_rescale_factor = 1.,
|
81 |
+
seq_before_head_dim = False
|
82 |
+
):
|
83 |
+
super().__init__()
|
84 |
+
# proposed by reddit user bloc97, to rescale rotary embeddings to longer sequence length without fine-tuning
|
85 |
+
# has some connection to NTK literature
|
86 |
+
# https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
|
87 |
+
|
88 |
+
theta *= theta_rescale_factor ** (dim / (dim - 2))
|
89 |
+
|
90 |
+
self.freqs_for = freqs_for
|
91 |
+
|
92 |
+
if exists(custom_freqs):
|
93 |
+
freqs = custom_freqs
|
94 |
+
elif freqs_for == 'lang':
|
95 |
+
freqs = 1. / (theta ** (torch.arange(0, dim, 2)[:(dim // 2)].float() / dim))
|
96 |
+
elif freqs_for == 'pixel':
|
97 |
+
freqs = torch.linspace(1., max_freq / 2, dim // 2) * pi
|
98 |
+
elif freqs_for == 'constant':
|
99 |
+
freqs = torch.ones(num_freqs).float()
|
100 |
+
|
101 |
+
self.tmp_store('cached_freqs', None)
|
102 |
+
self.tmp_store('cached_scales', None)
|
103 |
+
|
104 |
+
self.freqs = nn.Parameter(freqs, requires_grad = learned_freq)
|
105 |
+
|
106 |
+
self.learned_freq = learned_freq
|
107 |
+
|
108 |
+
# dummy for device
|
109 |
+
|
110 |
+
self.tmp_store('dummy', torch.tensor(0))
|
111 |
+
|
112 |
+
# default sequence dimension
|
113 |
+
|
114 |
+
self.seq_before_head_dim = seq_before_head_dim
|
115 |
+
self.default_seq_dim = -3 if seq_before_head_dim else -2
|
116 |
+
|
117 |
+
# interpolation factors
|
118 |
+
|
119 |
+
assert interpolate_factor >= 1.
|
120 |
+
self.interpolate_factor = interpolate_factor
|
121 |
+
|
122 |
+
# xpos
|
123 |
+
|
124 |
+
self.use_xpos = use_xpos
|
125 |
+
if not use_xpos:
|
126 |
+
self.tmp_store('scale', None)
|
127 |
+
return
|
128 |
+
|
129 |
+
scale = (torch.arange(0, dim, 2) + 0.4 * dim) / (1.4 * dim)
|
130 |
+
self.scale_base = xpos_scale_base
|
131 |
+
self.tmp_store('scale', scale)
|
132 |
+
|
133 |
+
@property
|
134 |
+
def device(self):
|
135 |
+
return self.dummy.device
|
136 |
+
|
137 |
+
def tmp_store(self, key, value):
|
138 |
+
self.register_buffer(key, value, persistent = False)
|
139 |
+
|
140 |
+
def get_seq_pos(self, seq_len, device, dtype, offset = 0):
|
141 |
+
return (torch.arange(seq_len, device = device, dtype = dtype) + offset) / self.interpolate_factor
|
142 |
+
|
143 |
+
def rotate_queries_or_keys(self, t, seq_dim = None, offset = 0, freq_seq_len = None, seq_pos = None):
|
144 |
+
seq_dim = default(seq_dim, self.default_seq_dim)
|
145 |
+
|
146 |
+
assert not self.use_xpos, 'you must use `.rotate_queries_and_keys` method instead and pass in both queries and keys, for length extrapolatable rotary embeddings'
|
147 |
+
|
148 |
+
device, dtype, seq_len = t.device, t.dtype, t.shape[seq_dim]
|
149 |
+
|
150 |
+
if exists(freq_seq_len):
|
151 |
+
assert freq_seq_len >= seq_len
|
152 |
+
seq_len = freq_seq_len
|
153 |
+
|
154 |
+
if seq_pos is None:
|
155 |
+
seq_pos = self.get_seq_pos(seq_len, device = device, dtype = dtype, offset = offset)
|
156 |
+
else:
|
157 |
+
assert seq_pos.shape[0] == seq_len
|
158 |
+
|
159 |
+
freqs = self.forward(seq_pos, seq_len = seq_len, offset = offset)
|
160 |
+
|
161 |
+
if seq_dim == -3:
|
162 |
+
freqs = rearrange(freqs, 'n d -> n 1 d')
|
163 |
+
|
164 |
+
return apply_rotary_emb(freqs, t, seq_dim = seq_dim)
|
165 |
+
|
166 |
+
def rotate_queries_with_cached_keys(self, q, k, seq_dim = None, offset = 0):
|
167 |
+
seq_dim = default(seq_dim, self.default_seq_dim)
|
168 |
+
|
169 |
+
q_len, k_len = q.shape[seq_dim], k.shape[seq_dim]
|
170 |
+
assert q_len <= k_len
|
171 |
+
rotated_q = self.rotate_queries_or_keys(q, seq_dim = seq_dim, freq_seq_len = k_len)
|
172 |
+
rotated_k = self.rotate_queries_or_keys(k, seq_dim = seq_dim)
|
173 |
+
|
174 |
+
rotated_q = rotated_q.type(q.dtype)
|
175 |
+
rotated_k = rotated_k.type(k.dtype)
|
176 |
+
|
177 |
+
return rotated_q, rotated_k
|
178 |
+
|
179 |
+
def rotate_queries_and_keys(self, q, k, seq_dim = None):
|
180 |
+
seq_dim = default(seq_dim, self.default_seq_dim)
|
181 |
+
|
182 |
+
assert self.use_xpos
|
183 |
+
device, dtype, seq_len = q.device, q.dtype, q.shape[seq_dim]
|
184 |
+
|
185 |
+
seq = self.get_seq_pos(seq_len, dtype = dtype, device = device)
|
186 |
+
|
187 |
+
freqs = self.forward(seq, seq_len = seq_len)
|
188 |
+
scale = self.get_scale(seq, seq_len = seq_len).to(dtype)
|
189 |
+
|
190 |
+
if seq_dim == -3:
|
191 |
+
freqs = rearrange(freqs, 'n d -> n 1 d')
|
192 |
+
scale = rearrange(scale, 'n d -> n 1 d')
|
193 |
+
|
194 |
+
rotated_q = apply_rotary_emb(freqs, q, scale = scale, seq_dim = seq_dim)
|
195 |
+
rotated_k = apply_rotary_emb(freqs, k, scale = scale ** -1, seq_dim = seq_dim)
|
196 |
+
|
197 |
+
rotated_q = rotated_q.type(q.dtype)
|
198 |
+
rotated_k = rotated_k.type(k.dtype)
|
199 |
+
|
200 |
+
return rotated_q, rotated_k
|
201 |
+
|
202 |
+
@beartype
|
203 |
+
def get_scale(
|
204 |
+
self,
|
205 |
+
t: Tensor,
|
206 |
+
seq_len: Optional[int] = None,
|
207 |
+
offset = 0
|
208 |
+
):
|
209 |
+
assert self.use_xpos
|
210 |
+
|
211 |
+
should_cache = exists(seq_len)
|
212 |
+
|
213 |
+
if (
|
214 |
+
should_cache and \
|
215 |
+
exists(self.cached_scales) and \
|
216 |
+
(seq_len + offset) <= self.cached_scales.shape[0]
|
217 |
+
):
|
218 |
+
return self.cached_scales[offset:(offset + seq_len)]
|
219 |
+
|
220 |
+
scale = 1.
|
221 |
+
if self.use_xpos:
|
222 |
+
power = (t - len(t) // 2) / self.scale_base
|
223 |
+
scale = self.scale ** rearrange(power, 'n -> n 1')
|
224 |
+
scale = torch.cat((scale, scale), dim = -1)
|
225 |
+
|
226 |
+
if should_cache:
|
227 |
+
self.tmp_store('cached_scales', scale)
|
228 |
+
|
229 |
+
return scale
|
230 |
+
|
231 |
+
def get_axial_freqs(self, *dims):
|
232 |
+
Colon = slice(None)
|
233 |
+
all_freqs = []
|
234 |
+
|
235 |
+
for ind, dim in enumerate(dims):
|
236 |
+
if self.freqs_for == 'pixel':
|
237 |
+
pos = torch.linspace(-1, 1, steps = dim, device = self.device)
|
238 |
+
else:
|
239 |
+
pos = torch.arange(dim, device = self.device)
|
240 |
+
|
241 |
+
freqs = self.forward(pos, seq_len = dim)
|
242 |
+
|
243 |
+
all_axis = [None] * len(dims)
|
244 |
+
all_axis[ind] = Colon
|
245 |
+
|
246 |
+
new_axis_slice = (Ellipsis, *all_axis, Colon)
|
247 |
+
all_freqs.append(freqs[new_axis_slice])
|
248 |
+
|
249 |
+
all_freqs = broadcast_tensors(*all_freqs)
|
250 |
+
return torch.cat(all_freqs, dim = -1)
|
251 |
+
|
252 |
+
@autocast(enabled = False)
|
253 |
+
def forward(
|
254 |
+
self,
|
255 |
+
t: Tensor,
|
256 |
+
seq_len = None,
|
257 |
+
offset = 0
|
258 |
+
):
|
259 |
+
# should_cache = (
|
260 |
+
# not self.learned_freq and \
|
261 |
+
# exists(seq_len) and \
|
262 |
+
# self.freqs_for != 'pixel'
|
263 |
+
# )
|
264 |
+
|
265 |
+
# if (
|
266 |
+
# should_cache and \
|
267 |
+
# exists(self.cached_freqs) and \
|
268 |
+
# (offset + seq_len) <= self.cached_freqs.shape[0]
|
269 |
+
# ):
|
270 |
+
# return self.cached_freqs[offset:(offset + seq_len)].detach()
|
271 |
+
|
272 |
+
freqs = self.freqs
|
273 |
+
|
274 |
+
freqs = einsum('..., f -> ... f', t.type(freqs.dtype), freqs)
|
275 |
+
freqs = repeat(freqs, '... n -> ... (n r)', r = 2)
|
276 |
+
|
277 |
+
# if should_cache:
|
278 |
+
# self.tmp_store('cached_freqs', freqs.detach())
|
279 |
+
|
280 |
+
return freqs
|
consisti2v/models/videoldm_attention.py
ADDED
@@ -0,0 +1,809 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from importlib import import_module
|
2 |
+
from typing import Callable, Optional, Union
|
3 |
+
import math
|
4 |
+
|
5 |
+
from einops import rearrange, repeat
|
6 |
+
|
7 |
+
import torch
|
8 |
+
import torch.nn.functional as F
|
9 |
+
from torch import nn
|
10 |
+
|
11 |
+
from diffusers.utils import deprecate, logging
|
12 |
+
from diffusers.utils.import_utils import is_xformers_available
|
13 |
+
from diffusers.utils.torch_utils import maybe_allow_in_graph
|
14 |
+
from diffusers.models.lora import LoRACompatibleLinear, LoRALinearLayer
|
15 |
+
from diffusers.models.attention_processor import (
|
16 |
+
Attention,
|
17 |
+
AttnAddedKVProcessor,
|
18 |
+
AttnAddedKVProcessor2_0,
|
19 |
+
AttnProcessor,
|
20 |
+
AttnProcessor2_0,
|
21 |
+
SpatialNorm,
|
22 |
+
LORA_ATTENTION_PROCESSORS,
|
23 |
+
CustomDiffusionAttnProcessor,
|
24 |
+
CustomDiffusionXFormersAttnProcessor,
|
25 |
+
SlicedAttnAddedKVProcessor,
|
26 |
+
XFormersAttnAddedKVProcessor,
|
27 |
+
LoRAAttnAddedKVProcessor,
|
28 |
+
XFormersAttnProcessor,
|
29 |
+
LoRAXFormersAttnProcessor,
|
30 |
+
LoRAAttnProcessor,
|
31 |
+
LoRAAttnProcessor2_0,
|
32 |
+
SlicedAttnProcessor,
|
33 |
+
AttentionProcessor
|
34 |
+
)
|
35 |
+
|
36 |
+
from .rotary_embedding import RotaryEmbedding
|
37 |
+
|
38 |
+
|
39 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
40 |
+
|
41 |
+
|
42 |
+
if is_xformers_available():
|
43 |
+
import xformers
|
44 |
+
import xformers.ops
|
45 |
+
else:
|
46 |
+
xformers = None
|
47 |
+
|
48 |
+
@maybe_allow_in_graph
|
49 |
+
class ConditionalAttention(nn.Module):
|
50 |
+
r"""
|
51 |
+
A cross attention layer.
|
52 |
+
|
53 |
+
Parameters:
|
54 |
+
query_dim (`int`): The number of channels in the query.
|
55 |
+
cross_attention_dim (`int`, *optional*):
|
56 |
+
The number of channels in the encoder_hidden_states. If not given, defaults to `query_dim`.
|
57 |
+
heads (`int`, *optional*, defaults to 8): The number of heads to use for multi-head attention.
|
58 |
+
dim_head (`int`, *optional*, defaults to 64): The number of channels in each head.
|
59 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
60 |
+
bias (`bool`, *optional*, defaults to False):
|
61 |
+
Set to `True` for the query, key, and value linear layers to contain a bias parameter.
|
62 |
+
"""
|
63 |
+
|
64 |
+
def __init__(
|
65 |
+
self,
|
66 |
+
query_dim: int,
|
67 |
+
cross_attention_dim: Optional[int] = None,
|
68 |
+
heads: int = 8,
|
69 |
+
dim_head: int = 64,
|
70 |
+
dropout: float = 0.0,
|
71 |
+
bias=False,
|
72 |
+
upcast_attention: bool = False,
|
73 |
+
upcast_softmax: bool = False,
|
74 |
+
cross_attention_norm: Optional[str] = None,
|
75 |
+
cross_attention_norm_num_groups: int = 32,
|
76 |
+
added_kv_proj_dim: Optional[int] = None,
|
77 |
+
norm_num_groups: Optional[int] = None,
|
78 |
+
spatial_norm_dim: Optional[int] = None,
|
79 |
+
out_bias: bool = True,
|
80 |
+
scale_qk: bool = True,
|
81 |
+
only_cross_attention: bool = False,
|
82 |
+
eps: float = 1e-5,
|
83 |
+
rescale_output_factor: float = 1.0,
|
84 |
+
residual_connection: bool = False,
|
85 |
+
_from_deprecated_attn_block=False,
|
86 |
+
processor: Optional["AttnProcessor"] = None,
|
87 |
+
):
|
88 |
+
super().__init__()
|
89 |
+
self.inner_dim = dim_head * heads
|
90 |
+
self.cross_attention_dim = cross_attention_dim if cross_attention_dim is not None else query_dim
|
91 |
+
self.upcast_attention = upcast_attention
|
92 |
+
self.upcast_softmax = upcast_softmax
|
93 |
+
self.rescale_output_factor = rescale_output_factor
|
94 |
+
self.residual_connection = residual_connection
|
95 |
+
self.dropout = dropout
|
96 |
+
|
97 |
+
# we make use of this private variable to know whether this class is loaded
|
98 |
+
# with an deprecated state dict so that we can convert it on the fly
|
99 |
+
self._from_deprecated_attn_block = _from_deprecated_attn_block
|
100 |
+
|
101 |
+
self.scale_qk = scale_qk
|
102 |
+
self.scale = dim_head**-0.5 if self.scale_qk else 1.0
|
103 |
+
|
104 |
+
self.heads = heads
|
105 |
+
# for slice_size > 0 the attention score computation
|
106 |
+
# is split across the batch axis to save memory
|
107 |
+
# You can set slice_size with `set_attention_slice`
|
108 |
+
self.sliceable_head_dim = heads
|
109 |
+
|
110 |
+
self.added_kv_proj_dim = added_kv_proj_dim
|
111 |
+
self.only_cross_attention = only_cross_attention
|
112 |
+
|
113 |
+
if self.added_kv_proj_dim is None and self.only_cross_attention:
|
114 |
+
raise ValueError(
|
115 |
+
"`only_cross_attention` can only be set to True if `added_kv_proj_dim` is not None. Make sure to set either `only_cross_attention=False` or define `added_kv_proj_dim`."
|
116 |
+
)
|
117 |
+
|
118 |
+
if norm_num_groups is not None:
|
119 |
+
self.group_norm = nn.GroupNorm(num_channels=query_dim, num_groups=norm_num_groups, eps=eps, affine=True)
|
120 |
+
else:
|
121 |
+
self.group_norm = None
|
122 |
+
|
123 |
+
if spatial_norm_dim is not None:
|
124 |
+
self.spatial_norm = SpatialNorm(f_channels=query_dim, zq_channels=spatial_norm_dim)
|
125 |
+
else:
|
126 |
+
self.spatial_norm = None
|
127 |
+
|
128 |
+
if cross_attention_norm is None:
|
129 |
+
self.norm_cross = None
|
130 |
+
elif cross_attention_norm == "layer_norm":
|
131 |
+
self.norm_cross = nn.LayerNorm(self.cross_attention_dim)
|
132 |
+
elif cross_attention_norm == "group_norm":
|
133 |
+
if self.added_kv_proj_dim is not None:
|
134 |
+
# The given `encoder_hidden_states` are initially of shape
|
135 |
+
# (batch_size, seq_len, added_kv_proj_dim) before being projected
|
136 |
+
# to (batch_size, seq_len, cross_attention_dim). The norm is applied
|
137 |
+
# before the projection, so we need to use `added_kv_proj_dim` as
|
138 |
+
# the number of channels for the group norm.
|
139 |
+
norm_cross_num_channels = added_kv_proj_dim
|
140 |
+
else:
|
141 |
+
norm_cross_num_channels = self.cross_attention_dim
|
142 |
+
|
143 |
+
self.norm_cross = nn.GroupNorm(
|
144 |
+
num_channels=norm_cross_num_channels, num_groups=cross_attention_norm_num_groups, eps=1e-5, affine=True
|
145 |
+
)
|
146 |
+
else:
|
147 |
+
raise ValueError(
|
148 |
+
f"unknown cross_attention_norm: {cross_attention_norm}. Should be None, 'layer_norm' or 'group_norm'"
|
149 |
+
)
|
150 |
+
|
151 |
+
self.to_q = LoRACompatibleLinear(query_dim, self.inner_dim, bias=bias)
|
152 |
+
|
153 |
+
if not self.only_cross_attention:
|
154 |
+
# only relevant for the `AddedKVProcessor` classes
|
155 |
+
self.to_k = LoRACompatibleLinear(self.cross_attention_dim, self.inner_dim, bias=bias)
|
156 |
+
self.to_v = LoRACompatibleLinear(self.cross_attention_dim, self.inner_dim, bias=bias)
|
157 |
+
else:
|
158 |
+
self.to_k = None
|
159 |
+
self.to_v = None
|
160 |
+
|
161 |
+
if self.added_kv_proj_dim is not None:
|
162 |
+
self.add_k_proj = LoRACompatibleLinear(added_kv_proj_dim, self.inner_dim)
|
163 |
+
self.add_v_proj = LoRACompatibleLinear(added_kv_proj_dim, self.inner_dim)
|
164 |
+
|
165 |
+
self.to_out = nn.ModuleList([])
|
166 |
+
self.to_out.append(LoRACompatibleLinear(self.inner_dim, query_dim, bias=out_bias))
|
167 |
+
self.to_out.append(nn.Dropout(dropout))
|
168 |
+
|
169 |
+
# set attention processor
|
170 |
+
# We use the AttnProcessor2_0 by default when torch 2.x is used which uses
|
171 |
+
# torch.nn.functional.scaled_dot_product_attention for native Flash/memory_efficient_attention
|
172 |
+
# but only if it has the default `scale` argument. TODO remove scale_qk check when we move to torch 2.1
|
173 |
+
if processor is None:
|
174 |
+
processor = (
|
175 |
+
AttnProcessor2_0() if hasattr(F, "scaled_dot_product_attention") and self.scale_qk else AttnProcessor()
|
176 |
+
)
|
177 |
+
self.set_processor(processor)
|
178 |
+
|
179 |
+
def set_use_memory_efficient_attention_xformers(
|
180 |
+
self, use_memory_efficient_attention_xformers: bool, attention_op: Optional[Callable] = None
|
181 |
+
):
|
182 |
+
is_lora = hasattr(self, "processor") and isinstance(
|
183 |
+
self.processor,
|
184 |
+
LORA_ATTENTION_PROCESSORS,
|
185 |
+
)
|
186 |
+
is_custom_diffusion = hasattr(self, "processor") and isinstance(
|
187 |
+
self.processor, (CustomDiffusionAttnProcessor, CustomDiffusionXFormersAttnProcessor)
|
188 |
+
)
|
189 |
+
is_added_kv_processor = hasattr(self, "processor") and isinstance(
|
190 |
+
self.processor,
|
191 |
+
(
|
192 |
+
AttnAddedKVProcessor,
|
193 |
+
AttnAddedKVProcessor2_0,
|
194 |
+
SlicedAttnAddedKVProcessor,
|
195 |
+
XFormersAttnAddedKVProcessor,
|
196 |
+
LoRAAttnAddedKVProcessor,
|
197 |
+
),
|
198 |
+
)
|
199 |
+
|
200 |
+
if use_memory_efficient_attention_xformers:
|
201 |
+
if is_added_kv_processor and (is_lora or is_custom_diffusion):
|
202 |
+
raise NotImplementedError(
|
203 |
+
f"Memory efficient attention is currently not supported for LoRA or custom diffusion for attention processor type {self.processor}"
|
204 |
+
)
|
205 |
+
if not is_xformers_available():
|
206 |
+
raise ModuleNotFoundError(
|
207 |
+
(
|
208 |
+
"Refer to https://github.com/facebookresearch/xformers for more information on how to install"
|
209 |
+
" xformers"
|
210 |
+
),
|
211 |
+
name="xformers",
|
212 |
+
)
|
213 |
+
elif not torch.cuda.is_available():
|
214 |
+
raise ValueError(
|
215 |
+
"torch.cuda.is_available() should be True but is False. xformers' memory efficient attention is"
|
216 |
+
" only available for GPU "
|
217 |
+
)
|
218 |
+
else:
|
219 |
+
try:
|
220 |
+
# Make sure we can run the memory efficient attention
|
221 |
+
_ = xformers.ops.memory_efficient_attention(
|
222 |
+
torch.randn((1, 2, 40), device="cuda"),
|
223 |
+
torch.randn((1, 2, 40), device="cuda"),
|
224 |
+
torch.randn((1, 2, 40), device="cuda"),
|
225 |
+
)
|
226 |
+
except Exception as e:
|
227 |
+
raise e
|
228 |
+
|
229 |
+
if is_lora:
|
230 |
+
# TODO (sayakpaul): should we throw a warning if someone wants to use the xformers
|
231 |
+
# variant when using PT 2.0 now that we have LoRAAttnProcessor2_0?
|
232 |
+
processor = LoRAXFormersAttnProcessor(
|
233 |
+
hidden_size=self.processor.hidden_size,
|
234 |
+
cross_attention_dim=self.processor.cross_attention_dim,
|
235 |
+
rank=self.processor.rank,
|
236 |
+
attention_op=attention_op,
|
237 |
+
)
|
238 |
+
processor.load_state_dict(self.processor.state_dict())
|
239 |
+
processor.to(self.processor.to_q_lora.up.weight.device)
|
240 |
+
elif is_custom_diffusion:
|
241 |
+
processor = CustomDiffusionXFormersAttnProcessor(
|
242 |
+
train_kv=self.processor.train_kv,
|
243 |
+
train_q_out=self.processor.train_q_out,
|
244 |
+
hidden_size=self.processor.hidden_size,
|
245 |
+
cross_attention_dim=self.processor.cross_attention_dim,
|
246 |
+
attention_op=attention_op,
|
247 |
+
)
|
248 |
+
processor.load_state_dict(self.processor.state_dict())
|
249 |
+
if hasattr(self.processor, "to_k_custom_diffusion"):
|
250 |
+
processor.to(self.processor.to_k_custom_diffusion.weight.device)
|
251 |
+
elif is_added_kv_processor:
|
252 |
+
# TODO(Patrick, Suraj, William) - currently xformers doesn't work for UnCLIP
|
253 |
+
# which uses this type of cross attention ONLY because the attention mask of format
|
254 |
+
# [0, ..., -10.000, ..., 0, ...,] is not supported
|
255 |
+
# throw warning
|
256 |
+
logger.info(
|
257 |
+
"Memory efficient attention with `xformers` might currently not work correctly if an attention mask is required for the attention operation."
|
258 |
+
)
|
259 |
+
processor = XFormersAttnAddedKVProcessor(attention_op=attention_op)
|
260 |
+
else:
|
261 |
+
processor = XFormersAttnProcessor(attention_op=attention_op)
|
262 |
+
else:
|
263 |
+
if is_lora:
|
264 |
+
attn_processor_class = (
|
265 |
+
LoRAAttnProcessor2_0 if hasattr(F, "scaled_dot_product_attention") else LoRAAttnProcessor
|
266 |
+
)
|
267 |
+
processor = attn_processor_class(
|
268 |
+
hidden_size=self.processor.hidden_size,
|
269 |
+
cross_attention_dim=self.processor.cross_attention_dim,
|
270 |
+
rank=self.processor.rank,
|
271 |
+
)
|
272 |
+
processor.load_state_dict(self.processor.state_dict())
|
273 |
+
processor.to(self.processor.to_q_lora.up.weight.device)
|
274 |
+
elif is_custom_diffusion:
|
275 |
+
processor = CustomDiffusionAttnProcessor(
|
276 |
+
train_kv=self.processor.train_kv,
|
277 |
+
train_q_out=self.processor.train_q_out,
|
278 |
+
hidden_size=self.processor.hidden_size,
|
279 |
+
cross_attention_dim=self.processor.cross_attention_dim,
|
280 |
+
)
|
281 |
+
processor.load_state_dict(self.processor.state_dict())
|
282 |
+
if hasattr(self.processor, "to_k_custom_diffusion"):
|
283 |
+
processor.to(self.processor.to_k_custom_diffusion.weight.device)
|
284 |
+
else:
|
285 |
+
# set attention processor
|
286 |
+
# We use the AttnProcessor2_0 by default when torch 2.x is used which uses
|
287 |
+
# torch.nn.functional.scaled_dot_product_attention for native Flash/memory_efficient_attention
|
288 |
+
# but only if it has the default `scale` argument. TODO remove scale_qk check when we move to torch 2.1
|
289 |
+
processor = (
|
290 |
+
AttnProcessor2_0()
|
291 |
+
if hasattr(F, "scaled_dot_product_attention") and self.scale_qk
|
292 |
+
else AttnProcessor()
|
293 |
+
)
|
294 |
+
|
295 |
+
self.set_processor(processor)
|
296 |
+
|
297 |
+
def set_attention_slice(self, slice_size):
|
298 |
+
if slice_size is not None and slice_size > self.sliceable_head_dim:
|
299 |
+
raise ValueError(f"slice_size {slice_size} has to be smaller or equal to {self.sliceable_head_dim}.")
|
300 |
+
|
301 |
+
if slice_size is not None and self.added_kv_proj_dim is not None:
|
302 |
+
processor = SlicedAttnAddedKVProcessor(slice_size)
|
303 |
+
elif slice_size is not None:
|
304 |
+
processor = SlicedAttnProcessor(slice_size)
|
305 |
+
elif self.added_kv_proj_dim is not None:
|
306 |
+
processor = AttnAddedKVProcessor()
|
307 |
+
else:
|
308 |
+
# set attention processor
|
309 |
+
# We use the AttnProcessor2_0 by default when torch 2.x is used which uses
|
310 |
+
# torch.nn.functional.scaled_dot_product_attention for native Flash/memory_efficient_attention
|
311 |
+
# but only if it has the default `scale` argument. TODO remove scale_qk check when we move to torch 2.1
|
312 |
+
processor = (
|
313 |
+
AttnProcessor2_0() if hasattr(F, "scaled_dot_product_attention") and self.scale_qk else AttnProcessor()
|
314 |
+
)
|
315 |
+
|
316 |
+
self.set_processor(processor)
|
317 |
+
|
318 |
+
def set_processor(self, processor: "AttnProcessor"):
|
319 |
+
if (
|
320 |
+
hasattr(self, "processor")
|
321 |
+
and not isinstance(processor, LORA_ATTENTION_PROCESSORS)
|
322 |
+
and self.to_q.lora_layer is not None
|
323 |
+
):
|
324 |
+
deprecate(
|
325 |
+
"set_processor to offload LoRA",
|
326 |
+
"0.26.0",
|
327 |
+
"In detail, removing LoRA layers via calling `set_processor` or `set_default_attn_processor` is deprecated. Please make sure to call `pipe.unload_lora_weights()` instead.",
|
328 |
+
)
|
329 |
+
# (Patrick, Sayak) - this can be deprecated once PEFT LoRA integration is complete
|
330 |
+
# We need to remove all LoRA layers
|
331 |
+
for module in self.modules():
|
332 |
+
if hasattr(module, "set_lora_layer"):
|
333 |
+
module.set_lora_layer(None)
|
334 |
+
|
335 |
+
# if current processor is in `self._modules` and if passed `processor` is not, we need to
|
336 |
+
# pop `processor` from `self._modules`
|
337 |
+
if (
|
338 |
+
hasattr(self, "processor")
|
339 |
+
and isinstance(self.processor, torch.nn.Module)
|
340 |
+
and not isinstance(processor, torch.nn.Module)
|
341 |
+
):
|
342 |
+
logger.info(f"You are removing possibly trained weights of {self.processor} with {processor}")
|
343 |
+
self._modules.pop("processor")
|
344 |
+
|
345 |
+
self.processor = processor
|
346 |
+
|
347 |
+
def get_processor(self, return_deprecated_lora: bool = False) -> "AttentionProcessor":
|
348 |
+
if not return_deprecated_lora:
|
349 |
+
return self.processor
|
350 |
+
|
351 |
+
# TODO(Sayak, Patrick). The rest of the function is needed to ensure backwards compatible
|
352 |
+
# serialization format for LoRA Attention Processors. It should be deleted once the integration
|
353 |
+
# with PEFT is completed.
|
354 |
+
is_lora_activated = {
|
355 |
+
name: module.lora_layer is not None
|
356 |
+
for name, module in self.named_modules()
|
357 |
+
if hasattr(module, "lora_layer")
|
358 |
+
}
|
359 |
+
|
360 |
+
# 1. if no layer has a LoRA activated we can return the processor as usual
|
361 |
+
if not any(is_lora_activated.values()):
|
362 |
+
return self.processor
|
363 |
+
|
364 |
+
# If doesn't apply LoRA do `add_k_proj` or `add_v_proj`
|
365 |
+
is_lora_activated.pop("add_k_proj", None)
|
366 |
+
is_lora_activated.pop("add_v_proj", None)
|
367 |
+
# 2. else it is not posssible that only some layers have LoRA activated
|
368 |
+
if not all(is_lora_activated.values()):
|
369 |
+
raise ValueError(
|
370 |
+
f"Make sure that either all layers or no layers have LoRA activated, but have {is_lora_activated}"
|
371 |
+
)
|
372 |
+
|
373 |
+
# 3. And we need to merge the current LoRA layers into the corresponding LoRA attention processor
|
374 |
+
non_lora_processor_cls_name = self.processor.__class__.__name__
|
375 |
+
lora_processor_cls = getattr(import_module(__name__), "LoRA" + non_lora_processor_cls_name)
|
376 |
+
|
377 |
+
hidden_size = self.inner_dim
|
378 |
+
|
379 |
+
# now create a LoRA attention processor from the LoRA layers
|
380 |
+
if lora_processor_cls in [LoRAAttnProcessor, LoRAAttnProcessor2_0, LoRAXFormersAttnProcessor]:
|
381 |
+
kwargs = {
|
382 |
+
"cross_attention_dim": self.cross_attention_dim,
|
383 |
+
"rank": self.to_q.lora_layer.rank,
|
384 |
+
"network_alpha": self.to_q.lora_layer.network_alpha,
|
385 |
+
"q_rank": self.to_q.lora_layer.rank,
|
386 |
+
"q_hidden_size": self.to_q.lora_layer.out_features,
|
387 |
+
"k_rank": self.to_k.lora_layer.rank,
|
388 |
+
"k_hidden_size": self.to_k.lora_layer.out_features,
|
389 |
+
"v_rank": self.to_v.lora_layer.rank,
|
390 |
+
"v_hidden_size": self.to_v.lora_layer.out_features,
|
391 |
+
"out_rank": self.to_out[0].lora_layer.rank,
|
392 |
+
"out_hidden_size": self.to_out[0].lora_layer.out_features,
|
393 |
+
}
|
394 |
+
|
395 |
+
if hasattr(self.processor, "attention_op"):
|
396 |
+
kwargs["attention_op"] = self.prcoessor.attention_op
|
397 |
+
|
398 |
+
lora_processor = lora_processor_cls(hidden_size, **kwargs)
|
399 |
+
lora_processor.to_q_lora.load_state_dict(self.to_q.lora_layer.state_dict())
|
400 |
+
lora_processor.to_k_lora.load_state_dict(self.to_k.lora_layer.state_dict())
|
401 |
+
lora_processor.to_v_lora.load_state_dict(self.to_v.lora_layer.state_dict())
|
402 |
+
lora_processor.to_out_lora.load_state_dict(self.to_out[0].lora_layer.state_dict())
|
403 |
+
elif lora_processor_cls == LoRAAttnAddedKVProcessor:
|
404 |
+
lora_processor = lora_processor_cls(
|
405 |
+
hidden_size,
|
406 |
+
cross_attention_dim=self.add_k_proj.weight.shape[0],
|
407 |
+
rank=self.to_q.lora_layer.rank,
|
408 |
+
network_alpha=self.to_q.lora_layer.network_alpha,
|
409 |
+
)
|
410 |
+
lora_processor.to_q_lora.load_state_dict(self.to_q.lora_layer.state_dict())
|
411 |
+
lora_processor.to_k_lora.load_state_dict(self.to_k.lora_layer.state_dict())
|
412 |
+
lora_processor.to_v_lora.load_state_dict(self.to_v.lora_layer.state_dict())
|
413 |
+
lora_processor.to_out_lora.load_state_dict(self.to_out[0].lora_layer.state_dict())
|
414 |
+
|
415 |
+
# only save if used
|
416 |
+
if self.add_k_proj.lora_layer is not None:
|
417 |
+
lora_processor.add_k_proj_lora.load_state_dict(self.add_k_proj.lora_layer.state_dict())
|
418 |
+
lora_processor.add_v_proj_lora.load_state_dict(self.add_v_proj.lora_layer.state_dict())
|
419 |
+
else:
|
420 |
+
lora_processor.add_k_proj_lora = None
|
421 |
+
lora_processor.add_v_proj_lora = None
|
422 |
+
else:
|
423 |
+
raise ValueError(f"{lora_processor_cls} does not exist.")
|
424 |
+
|
425 |
+
return lora_processor
|
426 |
+
|
427 |
+
def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None, **cross_attention_kwargs):
|
428 |
+
# The `Attention` class can call different attention processors / attention functions
|
429 |
+
# here we simply pass along all tensors to the selected processor class
|
430 |
+
# For standard processors that are defined here, `**cross_attention_kwargs` is empty
|
431 |
+
return self.processor(
|
432 |
+
self,
|
433 |
+
hidden_states,
|
434 |
+
encoder_hidden_states=encoder_hidden_states,
|
435 |
+
attention_mask=attention_mask,
|
436 |
+
**cross_attention_kwargs,
|
437 |
+
)
|
438 |
+
|
439 |
+
def batch_to_head_dim(self, tensor):
|
440 |
+
head_size = self.heads
|
441 |
+
batch_size, seq_len, dim = tensor.shape
|
442 |
+
tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim)
|
443 |
+
tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size // head_size, seq_len, dim * head_size)
|
444 |
+
return tensor
|
445 |
+
|
446 |
+
def head_to_batch_dim(self, tensor, out_dim=3):
|
447 |
+
head_size = self.heads
|
448 |
+
batch_size, seq_len, dim = tensor.shape
|
449 |
+
tensor = tensor.reshape(batch_size, seq_len, head_size, dim // head_size)
|
450 |
+
tensor = tensor.permute(0, 2, 1, 3)
|
451 |
+
|
452 |
+
if out_dim == 3:
|
453 |
+
tensor = tensor.reshape(batch_size * head_size, seq_len, dim // head_size)
|
454 |
+
|
455 |
+
return tensor
|
456 |
+
|
457 |
+
def get_attention_scores(self, query, key, attention_mask=None):
|
458 |
+
dtype = query.dtype
|
459 |
+
if self.upcast_attention:
|
460 |
+
query = query.float()
|
461 |
+
key = key.float()
|
462 |
+
|
463 |
+
if attention_mask is None:
|
464 |
+
baddbmm_input = torch.empty(
|
465 |
+
query.shape[0], query.shape[1], key.shape[1], dtype=query.dtype, device=query.device
|
466 |
+
)
|
467 |
+
beta = 0
|
468 |
+
else:
|
469 |
+
baddbmm_input = attention_mask
|
470 |
+
beta = 1
|
471 |
+
|
472 |
+
attention_scores = torch.baddbmm(
|
473 |
+
baddbmm_input,
|
474 |
+
query,
|
475 |
+
key.transpose(-1, -2),
|
476 |
+
beta=beta,
|
477 |
+
alpha=self.scale,
|
478 |
+
)
|
479 |
+
del baddbmm_input
|
480 |
+
|
481 |
+
if self.upcast_softmax:
|
482 |
+
attention_scores = attention_scores.float()
|
483 |
+
|
484 |
+
attention_probs = attention_scores.softmax(dim=-1)
|
485 |
+
del attention_scores
|
486 |
+
|
487 |
+
attention_probs = attention_probs.to(dtype)
|
488 |
+
|
489 |
+
return attention_probs
|
490 |
+
|
491 |
+
def prepare_attention_mask(self, attention_mask, target_length, batch_size=None, out_dim=3):
|
492 |
+
if batch_size is None:
|
493 |
+
deprecate(
|
494 |
+
"batch_size=None",
|
495 |
+
"0.22.0",
|
496 |
+
(
|
497 |
+
"Not passing the `batch_size` parameter to `prepare_attention_mask` can lead to incorrect"
|
498 |
+
" attention mask preparation and is deprecated behavior. Please make sure to pass `batch_size` to"
|
499 |
+
" `prepare_attention_mask` when preparing the attention_mask."
|
500 |
+
),
|
501 |
+
)
|
502 |
+
batch_size = 1
|
503 |
+
|
504 |
+
head_size = self.heads
|
505 |
+
if attention_mask is None:
|
506 |
+
return attention_mask
|
507 |
+
|
508 |
+
current_length: int = attention_mask.shape[-1]
|
509 |
+
if current_length != target_length:
|
510 |
+
if attention_mask.device.type == "mps":
|
511 |
+
# HACK: MPS: Does not support padding by greater than dimension of input tensor.
|
512 |
+
# Instead, we can manually construct the padding tensor.
|
513 |
+
padding_shape = (attention_mask.shape[0], attention_mask.shape[1], target_length)
|
514 |
+
padding = torch.zeros(padding_shape, dtype=attention_mask.dtype, device=attention_mask.device)
|
515 |
+
attention_mask = torch.cat([attention_mask, padding], dim=2)
|
516 |
+
else:
|
517 |
+
# TODO: for pipelines such as stable-diffusion, padding cross-attn mask:
|
518 |
+
# we want to instead pad by (0, remaining_length), where remaining_length is:
|
519 |
+
# remaining_length: int = target_length - current_length
|
520 |
+
# TODO: re-enable tests/models/test_models_unet_2d_condition.py#test_model_xattn_padding
|
521 |
+
attention_mask = F.pad(attention_mask, (0, target_length), value=0.0)
|
522 |
+
|
523 |
+
if out_dim == 3:
|
524 |
+
if attention_mask.shape[0] < batch_size * head_size:
|
525 |
+
attention_mask = attention_mask.repeat_interleave(head_size, dim=0)
|
526 |
+
elif out_dim == 4:
|
527 |
+
attention_mask = attention_mask.unsqueeze(1)
|
528 |
+
attention_mask = attention_mask.repeat_interleave(head_size, dim=1)
|
529 |
+
|
530 |
+
return attention_mask
|
531 |
+
|
532 |
+
def norm_encoder_hidden_states(self, encoder_hidden_states):
|
533 |
+
assert self.norm_cross is not None, "self.norm_cross must be defined to call self.norm_encoder_hidden_states"
|
534 |
+
|
535 |
+
if isinstance(self.norm_cross, nn.LayerNorm):
|
536 |
+
encoder_hidden_states = self.norm_cross(encoder_hidden_states)
|
537 |
+
elif isinstance(self.norm_cross, nn.GroupNorm):
|
538 |
+
# Group norm norms along the channels dimension and expects
|
539 |
+
# input to be in the shape of (N, C, *). In this case, we want
|
540 |
+
# to norm along the hidden dimension, so we need to move
|
541 |
+
# (batch_size, sequence_length, hidden_size) ->
|
542 |
+
# (batch_size, hidden_size, sequence_length)
|
543 |
+
encoder_hidden_states = encoder_hidden_states.transpose(1, 2)
|
544 |
+
encoder_hidden_states = self.norm_cross(encoder_hidden_states)
|
545 |
+
encoder_hidden_states = encoder_hidden_states.transpose(1, 2)
|
546 |
+
else:
|
547 |
+
assert False
|
548 |
+
|
549 |
+
return encoder_hidden_states
|
550 |
+
|
551 |
+
|
552 |
+
class TemporalConditionalAttention(Attention):
|
553 |
+
def __init__(self, n_frames=8, rotary_emb=False, *args, **kwargs):
|
554 |
+
super().__init__(processor=RotaryEmbAttnProcessor2_0() if rotary_emb else None, *args, **kwargs)
|
555 |
+
|
556 |
+
if not rotary_emb:
|
557 |
+
self.pos_enc = PositionalEncoding(self.inner_dim)
|
558 |
+
else:
|
559 |
+
rotary_bias = RelativePositionBias(heads=kwargs['heads'], max_distance=32)
|
560 |
+
self.rotary_bias = rotary_bias
|
561 |
+
self.rotary_emb = RotaryEmbedding(self.inner_dim // 2)
|
562 |
+
|
563 |
+
self.use_rotary_emb = rotary_emb
|
564 |
+
self.n_frames = n_frames
|
565 |
+
|
566 |
+
def forward(
|
567 |
+
self,
|
568 |
+
hidden_states,
|
569 |
+
encoder_hidden_states=None,
|
570 |
+
attention_mask=None,
|
571 |
+
adjacent_slices=None,
|
572 |
+
**cross_attention_kwargs):
|
573 |
+
|
574 |
+
key_pos_idx = None
|
575 |
+
|
576 |
+
bt, hw, c = hidden_states.shape
|
577 |
+
hidden_states = rearrange(hidden_states, '(b t) hw c -> b hw t c', t=self.n_frames)
|
578 |
+
if not self.use_rotary_emb:
|
579 |
+
pos_embed = self.pos_enc(self.n_frames)
|
580 |
+
hidden_states = hidden_states + pos_embed
|
581 |
+
hidden_states = rearrange(hidden_states, 'b hw t c -> (b hw) t c')
|
582 |
+
|
583 |
+
if encoder_hidden_states is not None:
|
584 |
+
assert adjacent_slices is None
|
585 |
+
encoder_hidden_states = encoder_hidden_states[::self.n_frames]
|
586 |
+
encoder_hidden_states = repeat(encoder_hidden_states, 'b n c -> (b hw) n c', hw=hw)
|
587 |
+
|
588 |
+
if adjacent_slices is not None:
|
589 |
+
assert encoder_hidden_states is None
|
590 |
+
adjacent_slices = rearrange(adjacent_slices, 'b c h w n -> b (h w) n c')
|
591 |
+
if not self.use_rotary_emb:
|
592 |
+
first_frame_pos_embed = pos_embed[0:1, :]
|
593 |
+
adjacent_slices = adjacent_slices + first_frame_pos_embed
|
594 |
+
else:
|
595 |
+
pos_idx = torch.arange(self.n_frames, device=hidden_states.device, dtype=hidden_states.dtype)
|
596 |
+
first_frame_pos_pad = torch.zeros(adjacent_slices.shape[2], device=hidden_states.device, dtype=hidden_states.dtype)
|
597 |
+
key_pos_idx = torch.cat([pos_idx, first_frame_pos_pad], dim=0)
|
598 |
+
adjacent_slices = rearrange(adjacent_slices, 'b hw n c -> (b hw) n c')
|
599 |
+
encoder_hidden_states = torch.cat([hidden_states, adjacent_slices], dim=1)
|
600 |
+
|
601 |
+
if not self.use_rotary_emb:
|
602 |
+
out = self.processor(
|
603 |
+
self,
|
604 |
+
hidden_states,
|
605 |
+
encoder_hidden_states=encoder_hidden_states,
|
606 |
+
attention_mask=attention_mask,
|
607 |
+
**cross_attention_kwargs,
|
608 |
+
)
|
609 |
+
else:
|
610 |
+
out = self.processor(
|
611 |
+
self,
|
612 |
+
hidden_states,
|
613 |
+
encoder_hidden_states=encoder_hidden_states,
|
614 |
+
attention_mask=attention_mask,
|
615 |
+
key_pos_idx=key_pos_idx,
|
616 |
+
**cross_attention_kwargs,
|
617 |
+
)
|
618 |
+
|
619 |
+
out = rearrange(out, '(b hw) t c -> (b t) hw c', hw=hw)
|
620 |
+
|
621 |
+
return out
|
622 |
+
|
623 |
+
def set_use_memory_efficient_attention_xformers(self, use_memory_efficient_attention_xformers, attention_op=None):
|
624 |
+
if use_memory_efficient_attention_xformers:
|
625 |
+
try:
|
626 |
+
# Make sure we can run the memory efficient attention
|
627 |
+
_ = xformers.ops.memory_efficient_attention(
|
628 |
+
torch.randn((1, 2, 40), device="cuda"),
|
629 |
+
torch.randn((1, 2, 40), device="cuda"),
|
630 |
+
torch.randn((1, 2, 40), device="cuda"),
|
631 |
+
)
|
632 |
+
except Exception as e:
|
633 |
+
raise e
|
634 |
+
processor = XFormersAttnProcessor(attention_op=attention_op)
|
635 |
+
else:
|
636 |
+
processor = (
|
637 |
+
AttnProcessor2_0()
|
638 |
+
if hasattr(F, "scaled_dot_product_attention") and self.scale_qk
|
639 |
+
else AttnProcessor()
|
640 |
+
)
|
641 |
+
self.set_processor(processor)
|
642 |
+
|
643 |
+
|
644 |
+
class PositionalEncoding(nn.Module):
|
645 |
+
def __init__(self, dim, max_pos=512):
|
646 |
+
super().__init__()
|
647 |
+
|
648 |
+
pos = torch.arange(max_pos)
|
649 |
+
|
650 |
+
freq = torch.arange(dim//2) / dim
|
651 |
+
freq = (freq * torch.tensor(10000).log()).exp()
|
652 |
+
|
653 |
+
x = rearrange(pos, 'L -> L 1') / freq
|
654 |
+
x = rearrange(x, 'L d -> L d 1')
|
655 |
+
|
656 |
+
pe = torch.cat((x.sin(), x.cos()), dim=-1)
|
657 |
+
self.pe = rearrange(pe, 'L d sc -> L (d sc)')
|
658 |
+
|
659 |
+
self.dummy = nn.Parameter(torch.rand(1))
|
660 |
+
|
661 |
+
def forward(self, length):
|
662 |
+
enc = self.pe[:length]
|
663 |
+
enc = enc.to(self.dummy.device, self.dummy.dtype)
|
664 |
+
return enc
|
665 |
+
|
666 |
+
|
667 |
+
# code taken from https://github.com/Vchitect/LaVie/blob/main/base/models/temporal_attention.py
|
668 |
+
class RelativePositionBias(nn.Module):
|
669 |
+
def __init__(
|
670 |
+
self,
|
671 |
+
heads=8,
|
672 |
+
num_buckets=32,
|
673 |
+
max_distance=128,
|
674 |
+
):
|
675 |
+
super().__init__()
|
676 |
+
self.num_buckets = num_buckets
|
677 |
+
self.max_distance = max_distance
|
678 |
+
self.relative_attention_bias = nn.Embedding(num_buckets, heads)
|
679 |
+
|
680 |
+
@staticmethod
|
681 |
+
def _relative_position_bucket(relative_position, num_buckets=32, max_distance=128):
|
682 |
+
ret = 0
|
683 |
+
n = -relative_position
|
684 |
+
|
685 |
+
num_buckets //= 2
|
686 |
+
ret += (n < 0).long() * num_buckets
|
687 |
+
n = torch.abs(n)
|
688 |
+
|
689 |
+
max_exact = num_buckets // 2
|
690 |
+
is_small = n < max_exact
|
691 |
+
|
692 |
+
val_if_large = max_exact + (
|
693 |
+
torch.log(n.float() / max_exact) / math.log(max_distance / max_exact) * (num_buckets - max_exact)
|
694 |
+
).long()
|
695 |
+
val_if_large = torch.min(val_if_large, torch.full_like(val_if_large, num_buckets - 1))
|
696 |
+
|
697 |
+
ret += torch.where(is_small, n, val_if_large)
|
698 |
+
return ret
|
699 |
+
|
700 |
+
def forward(self, qlen, klen, device, dtype):
|
701 |
+
q_pos = torch.arange(qlen, dtype = torch.long, device = device)
|
702 |
+
k_pos = torch.arange(klen, dtype = torch.long, device = device)
|
703 |
+
rel_pos = rearrange(k_pos, 'j -> 1 j') - rearrange(q_pos, 'i -> i 1')
|
704 |
+
rp_bucket = self._relative_position_bucket(rel_pos, num_buckets = self.num_buckets, max_distance = self.max_distance)
|
705 |
+
values = self.relative_attention_bias(rp_bucket)
|
706 |
+
values = values.to(device, dtype)
|
707 |
+
return rearrange(values, 'i j h -> h i j') # num_heads, num_frames, num_frames
|
708 |
+
|
709 |
+
|
710 |
+
class RotaryEmbAttnProcessor2_0:
|
711 |
+
r"""
|
712 |
+
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
|
713 |
+
Add rotary embedding support
|
714 |
+
"""
|
715 |
+
|
716 |
+
def __init__(self):
|
717 |
+
|
718 |
+
if not hasattr(F, "scaled_dot_product_attention"):
|
719 |
+
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
|
720 |
+
|
721 |
+
def __call__(
|
722 |
+
self,
|
723 |
+
attn: Attention,
|
724 |
+
hidden_states,
|
725 |
+
encoder_hidden_states=None,
|
726 |
+
attention_mask=None,
|
727 |
+
temb=None,
|
728 |
+
scale: float = 1.0,
|
729 |
+
key_pos_idx: Optional[torch.Tensor] = None,
|
730 |
+
):
|
731 |
+
assert attention_mask is None
|
732 |
+
residual = hidden_states
|
733 |
+
|
734 |
+
if attn.spatial_norm is not None:
|
735 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
736 |
+
|
737 |
+
input_ndim = hidden_states.ndim
|
738 |
+
|
739 |
+
if input_ndim == 4:
|
740 |
+
batch_size, channel, height, width = hidden_states.shape
|
741 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
742 |
+
|
743 |
+
batch_size, sequence_length, _ = (
|
744 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
745 |
+
)
|
746 |
+
|
747 |
+
# if attention_mask is not None:
|
748 |
+
# attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
749 |
+
# # scaled_dot_product_attention expects attention_mask shape to be
|
750 |
+
# # (batch, heads, source_length, target_length)
|
751 |
+
# attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
|
752 |
+
|
753 |
+
if attn.group_norm is not None:
|
754 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
755 |
+
|
756 |
+
query = attn.to_q(hidden_states, scale=scale)
|
757 |
+
|
758 |
+
if encoder_hidden_states is None:
|
759 |
+
encoder_hidden_states = hidden_states
|
760 |
+
elif attn.norm_cross:
|
761 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
762 |
+
|
763 |
+
qlen = hidden_states.shape[1]
|
764 |
+
klen = encoder_hidden_states.shape[1]
|
765 |
+
# currently only add bias for self attention. Relative distance doesn't make sense for cross attention.
|
766 |
+
# if qlen == klen:
|
767 |
+
# time_rel_pos_bias = attn.rotary_bias(qlen, klen, device=hidden_states.device, dtype=hidden_states.dtype)
|
768 |
+
# attention_mask = repeat(time_rel_pos_bias, "h d1 d2 -> b h d1 d2", b=batch_size)
|
769 |
+
|
770 |
+
key = attn.to_k(encoder_hidden_states, scale=scale)
|
771 |
+
value = attn.to_v(encoder_hidden_states, scale=scale)
|
772 |
+
|
773 |
+
query = attn.rotary_emb.rotate_queries_or_keys(query)
|
774 |
+
if qlen == klen:
|
775 |
+
key = attn.rotary_emb.rotate_queries_or_keys(key)
|
776 |
+
elif key_pos_idx is not None:
|
777 |
+
key = attn.rotary_emb.rotate_queries_or_keys(key, seq_pos=key_pos_idx)
|
778 |
+
|
779 |
+
inner_dim = key.shape[-1]
|
780 |
+
head_dim = inner_dim // attn.heads
|
781 |
+
|
782 |
+
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
783 |
+
|
784 |
+
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
785 |
+
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
786 |
+
|
787 |
+
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
788 |
+
# TODO: add support for attn.scale when we move to Torch 2.1
|
789 |
+
hidden_states = F.scaled_dot_product_attention(
|
790 |
+
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
791 |
+
)
|
792 |
+
|
793 |
+
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
794 |
+
hidden_states = hidden_states.to(query.dtype)
|
795 |
+
|
796 |
+
# linear proj
|
797 |
+
hidden_states = attn.to_out[0](hidden_states, scale=scale)
|
798 |
+
# dropout
|
799 |
+
hidden_states = attn.to_out[1](hidden_states)
|
800 |
+
|
801 |
+
if input_ndim == 4:
|
802 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
803 |
+
|
804 |
+
if attn.residual_connection:
|
805 |
+
hidden_states = hidden_states + residual
|
806 |
+
|
807 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
808 |
+
|
809 |
+
return hidden_states
|
consisti2v/models/videoldm_transformer_blocks.py
ADDED
@@ -0,0 +1,564 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Modified from https://github.com/huggingface/diffusers/blob/v0.21.0/src/diffusers/models/transformer_2d.py
|
2 |
+
from dataclasses import dataclass
|
3 |
+
from typing import Any, Dict, Optional
|
4 |
+
|
5 |
+
import torch
|
6 |
+
import torch.nn.functional as F
|
7 |
+
from torch import nn
|
8 |
+
|
9 |
+
from einops import rearrange, repeat
|
10 |
+
|
11 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
12 |
+
from diffusers.models.embeddings import ImagePositionalEmbeddings
|
13 |
+
from diffusers.utils import BaseOutput, deprecate
|
14 |
+
from diffusers.models.attention import AdaLayerNorm, AdaLayerNormZero, FeedForward, GatedSelfAttentionDense
|
15 |
+
from diffusers.models.embeddings import PatchEmbed
|
16 |
+
from diffusers.models.lora import LoRACompatibleConv, LoRACompatibleLinear
|
17 |
+
from diffusers.models.modeling_utils import ModelMixin
|
18 |
+
from diffusers.models.transformer_2d import Transformer2DModelOutput
|
19 |
+
from diffusers.utils.torch_utils import maybe_allow_in_graph
|
20 |
+
from diffusers.models.attention_processor import Attention
|
21 |
+
from diffusers.models.lora import LoRACompatibleLinear
|
22 |
+
|
23 |
+
from .videoldm_attention import ConditionalAttention, TemporalConditionalAttention
|
24 |
+
|
25 |
+
|
26 |
+
class Transformer2DConditionModel(ModelMixin, ConfigMixin):
|
27 |
+
@register_to_config
|
28 |
+
def __init__(
|
29 |
+
self,
|
30 |
+
num_attention_heads: int = 16,
|
31 |
+
attention_head_dim: int = 88,
|
32 |
+
in_channels: Optional[int] = None,
|
33 |
+
out_channels: Optional[int] = None,
|
34 |
+
num_layers: int = 1,
|
35 |
+
dropout: float = 0.0,
|
36 |
+
norm_num_groups: int = 32,
|
37 |
+
cross_attention_dim: Optional[int] = None,
|
38 |
+
attention_bias: bool = False,
|
39 |
+
sample_size: Optional[int] = None,
|
40 |
+
num_vector_embeds: Optional[int] = None,
|
41 |
+
patch_size: Optional[int] = None,
|
42 |
+
activation_fn: str = "geglu",
|
43 |
+
num_embeds_ada_norm: Optional[int] = None,
|
44 |
+
use_linear_projection: bool = False,
|
45 |
+
only_cross_attention: bool = False,
|
46 |
+
double_self_attention: bool = False,
|
47 |
+
upcast_attention: bool = False,
|
48 |
+
norm_type: str = "layer_norm",
|
49 |
+
norm_elementwise_affine: bool = True,
|
50 |
+
attention_type: str = "default",
|
51 |
+
# additional
|
52 |
+
n_frames: int = 8,
|
53 |
+
is_temporal: bool = False,
|
54 |
+
augment_temporal_attention: bool = False,
|
55 |
+
rotary_emb=False,
|
56 |
+
):
|
57 |
+
super().__init__()
|
58 |
+
self.use_linear_projection = use_linear_projection
|
59 |
+
self.num_attention_heads = num_attention_heads
|
60 |
+
self.attention_head_dim = attention_head_dim
|
61 |
+
inner_dim = num_attention_heads * attention_head_dim
|
62 |
+
|
63 |
+
# 1. Transformer2DModel can process both standard continuous images of shape `(batch_size, num_channels, width, height)` as well as quantized image embeddings of shape `(batch_size, num_image_vectors)`
|
64 |
+
# Define whether input is continuous or discrete depending on configuration
|
65 |
+
self.is_input_continuous = (in_channels is not None) and (patch_size is None)
|
66 |
+
self.is_input_vectorized = num_vector_embeds is not None
|
67 |
+
self.is_input_patches = in_channels is not None and patch_size is not None
|
68 |
+
|
69 |
+
if norm_type == "layer_norm" and num_embeds_ada_norm is not None:
|
70 |
+
deprecation_message = (
|
71 |
+
f"The configuration file of this model: {self.__class__} is outdated. `norm_type` is either not set or"
|
72 |
+
" incorrectly set to `'layer_norm'`.Make sure to set `norm_type` to `'ada_norm'` in the config."
|
73 |
+
" Please make sure to update the config accordingly as leaving `norm_type` might led to incorrect"
|
74 |
+
" results in future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it"
|
75 |
+
" would be very nice if you could open a Pull request for the `transformer/config.json` file"
|
76 |
+
)
|
77 |
+
deprecate("norm_type!=num_embeds_ada_norm", "1.0.0", deprecation_message, standard_warn=False)
|
78 |
+
norm_type = "ada_norm"
|
79 |
+
|
80 |
+
if self.is_input_continuous and self.is_input_vectorized:
|
81 |
+
raise ValueError(
|
82 |
+
f"Cannot define both `in_channels`: {in_channels} and `num_vector_embeds`: {num_vector_embeds}. Make"
|
83 |
+
" sure that either `in_channels` or `num_vector_embeds` is None."
|
84 |
+
)
|
85 |
+
elif self.is_input_vectorized and self.is_input_patches:
|
86 |
+
raise ValueError(
|
87 |
+
f"Cannot define both `num_vector_embeds`: {num_vector_embeds} and `patch_size`: {patch_size}. Make"
|
88 |
+
" sure that either `num_vector_embeds` or `num_patches` is None."
|
89 |
+
)
|
90 |
+
elif not self.is_input_continuous and not self.is_input_vectorized and not self.is_input_patches:
|
91 |
+
raise ValueError(
|
92 |
+
f"Has to define `in_channels`: {in_channels}, `num_vector_embeds`: {num_vector_embeds}, or patch_size:"
|
93 |
+
f" {patch_size}. Make sure that `in_channels`, `num_vector_embeds` or `num_patches` is not None."
|
94 |
+
)
|
95 |
+
|
96 |
+
# 2. Define input layers
|
97 |
+
if self.is_input_continuous:
|
98 |
+
self.in_channels = in_channels
|
99 |
+
|
100 |
+
self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True)
|
101 |
+
if use_linear_projection:
|
102 |
+
self.proj_in = LoRACompatibleLinear(in_channels, inner_dim)
|
103 |
+
else:
|
104 |
+
self.proj_in = LoRACompatibleConv(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)
|
105 |
+
elif self.is_input_vectorized:
|
106 |
+
assert sample_size is not None, "Transformer2DModel over discrete input must provide sample_size"
|
107 |
+
assert num_vector_embeds is not None, "Transformer2DModel over discrete input must provide num_embed"
|
108 |
+
|
109 |
+
self.height = sample_size
|
110 |
+
self.width = sample_size
|
111 |
+
self.num_vector_embeds = num_vector_embeds
|
112 |
+
self.num_latent_pixels = self.height * self.width
|
113 |
+
|
114 |
+
self.latent_image_embedding = ImagePositionalEmbeddings(
|
115 |
+
num_embed=num_vector_embeds, embed_dim=inner_dim, height=self.height, width=self.width
|
116 |
+
)
|
117 |
+
elif self.is_input_patches:
|
118 |
+
assert sample_size is not None, "Transformer2DModel over patched input must provide sample_size"
|
119 |
+
|
120 |
+
self.height = sample_size
|
121 |
+
self.width = sample_size
|
122 |
+
|
123 |
+
self.patch_size = patch_size
|
124 |
+
self.pos_embed = PatchEmbed(
|
125 |
+
height=sample_size,
|
126 |
+
width=sample_size,
|
127 |
+
patch_size=patch_size,
|
128 |
+
in_channels=in_channels,
|
129 |
+
embed_dim=inner_dim,
|
130 |
+
)
|
131 |
+
|
132 |
+
# 3. Define transformers blocks
|
133 |
+
self.transformer_blocks = nn.ModuleList(
|
134 |
+
[
|
135 |
+
BasicConditionalTransformerBlock(
|
136 |
+
inner_dim,
|
137 |
+
num_attention_heads,
|
138 |
+
attention_head_dim,
|
139 |
+
dropout=dropout,
|
140 |
+
cross_attention_dim=cross_attention_dim,
|
141 |
+
activation_fn=activation_fn,
|
142 |
+
num_embeds_ada_norm=num_embeds_ada_norm,
|
143 |
+
attention_bias=attention_bias,
|
144 |
+
only_cross_attention=only_cross_attention,
|
145 |
+
double_self_attention=double_self_attention,
|
146 |
+
upcast_attention=upcast_attention,
|
147 |
+
norm_type=norm_type,
|
148 |
+
norm_elementwise_affine=norm_elementwise_affine,
|
149 |
+
attention_type=attention_type,
|
150 |
+
# additional
|
151 |
+
n_frames=n_frames,
|
152 |
+
is_temporal=is_temporal,
|
153 |
+
augment_temporal_attention=augment_temporal_attention,
|
154 |
+
rotary_emb=rotary_emb,
|
155 |
+
)
|
156 |
+
for d in range(num_layers)
|
157 |
+
]
|
158 |
+
)
|
159 |
+
|
160 |
+
# 4. Define output layers
|
161 |
+
self.out_channels = in_channels if out_channels is None else out_channels
|
162 |
+
if self.is_input_continuous:
|
163 |
+
# TODO: should use out_channels for continuous projections
|
164 |
+
if use_linear_projection:
|
165 |
+
self.proj_out = LoRACompatibleLinear(inner_dim, in_channels)
|
166 |
+
else:
|
167 |
+
self.proj_out = LoRACompatibleConv(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
|
168 |
+
elif self.is_input_vectorized:
|
169 |
+
self.norm_out = nn.LayerNorm(inner_dim)
|
170 |
+
self.out = nn.Linear(inner_dim, self.num_vector_embeds - 1)
|
171 |
+
elif self.is_input_patches:
|
172 |
+
self.norm_out = nn.LayerNorm(inner_dim, elementwise_affine=False, eps=1e-6)
|
173 |
+
self.proj_out_1 = nn.Linear(inner_dim, 2 * inner_dim)
|
174 |
+
self.proj_out_2 = nn.Linear(inner_dim, patch_size * patch_size * self.out_channels)
|
175 |
+
|
176 |
+
self.alpha = None
|
177 |
+
if is_temporal:
|
178 |
+
self.alpha = nn.Parameter(torch.ones(1))
|
179 |
+
|
180 |
+
self.gradient_checkpointing = False
|
181 |
+
|
182 |
+
def forward(
|
183 |
+
self,
|
184 |
+
hidden_states: torch.Tensor,
|
185 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
186 |
+
timestep: Optional[torch.LongTensor] = None,
|
187 |
+
class_labels: Optional[torch.LongTensor] = None,
|
188 |
+
cross_attention_kwargs: Dict[str, Any] = None,
|
189 |
+
attention_mask: Optional[torch.Tensor] = None,
|
190 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
191 |
+
return_dict: bool = True,
|
192 |
+
condition_on_first_frame: bool = False,
|
193 |
+
):
|
194 |
+
input_states = hidden_states
|
195 |
+
input_height, input_width = hidden_states.shape[-2:]
|
196 |
+
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension.
|
197 |
+
# we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward.
|
198 |
+
# we can tell by counting dims; if ndim == 2: it's a mask rather than a bias.
|
199 |
+
# expects mask of shape:
|
200 |
+
# [batch, key_tokens]
|
201 |
+
# adds singleton query_tokens dimension:
|
202 |
+
# [batch, 1, key_tokens]
|
203 |
+
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
|
204 |
+
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
|
205 |
+
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
|
206 |
+
if attention_mask is not None and attention_mask.ndim == 2:
|
207 |
+
# assume that mask is expressed as:
|
208 |
+
# (1 = keep, 0 = discard)
|
209 |
+
# convert mask into a bias that can be added to attention scores:
|
210 |
+
# (keep = +0, discard = -10000.0)
|
211 |
+
attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0
|
212 |
+
attention_mask = attention_mask.unsqueeze(1)
|
213 |
+
|
214 |
+
# convert encoder_attention_mask to a bias the same way we do for attention_mask
|
215 |
+
if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2:
|
216 |
+
encoder_attention_mask = (1 - encoder_attention_mask.to(hidden_states.dtype)) * -10000.0
|
217 |
+
encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
|
218 |
+
|
219 |
+
# Retrieve lora scale.
|
220 |
+
lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0
|
221 |
+
|
222 |
+
# 1. Input
|
223 |
+
if self.is_input_continuous:
|
224 |
+
batch, _, height, width = hidden_states.shape
|
225 |
+
residual = hidden_states
|
226 |
+
|
227 |
+
hidden_states = self.norm(hidden_states)
|
228 |
+
if not self.use_linear_projection:
|
229 |
+
hidden_states = self.proj_in(hidden_states, lora_scale)
|
230 |
+
inner_dim = hidden_states.shape[1]
|
231 |
+
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * width, inner_dim)
|
232 |
+
else:
|
233 |
+
inner_dim = hidden_states.shape[1]
|
234 |
+
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * width, inner_dim)
|
235 |
+
hidden_states = self.proj_in(hidden_states, scale=lora_scale)
|
236 |
+
|
237 |
+
elif self.is_input_vectorized:
|
238 |
+
hidden_states = self.latent_image_embedding(hidden_states)
|
239 |
+
elif self.is_input_patches:
|
240 |
+
hidden_states = self.pos_embed(hidden_states)
|
241 |
+
|
242 |
+
# 2. Blocks
|
243 |
+
for block in self.transformer_blocks:
|
244 |
+
if self.training and self.gradient_checkpointing:
|
245 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
246 |
+
block,
|
247 |
+
hidden_states,
|
248 |
+
attention_mask,
|
249 |
+
encoder_hidden_states,
|
250 |
+
encoder_attention_mask,
|
251 |
+
timestep,
|
252 |
+
cross_attention_kwargs,
|
253 |
+
class_labels,
|
254 |
+
use_reentrant=False,
|
255 |
+
)
|
256 |
+
else:
|
257 |
+
hidden_states = block(
|
258 |
+
hidden_states,
|
259 |
+
attention_mask=attention_mask,
|
260 |
+
encoder_hidden_states=encoder_hidden_states,
|
261 |
+
encoder_attention_mask=encoder_attention_mask,
|
262 |
+
timestep=timestep,
|
263 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
264 |
+
class_labels=class_labels,
|
265 |
+
# additional
|
266 |
+
condition_on_first_frame=condition_on_first_frame,
|
267 |
+
input_height=input_height,
|
268 |
+
input_width=input_width,
|
269 |
+
)
|
270 |
+
|
271 |
+
# 3. Output
|
272 |
+
if self.is_input_continuous:
|
273 |
+
if not self.use_linear_projection:
|
274 |
+
hidden_states = hidden_states.reshape(batch, height, width, inner_dim).permute(0, 3, 1, 2).contiguous()
|
275 |
+
hidden_states = self.proj_out(hidden_states, scale=lora_scale)
|
276 |
+
else:
|
277 |
+
hidden_states = self.proj_out(hidden_states, scale=lora_scale)
|
278 |
+
hidden_states = hidden_states.reshape(batch, height, width, inner_dim).permute(0, 3, 1, 2).contiguous()
|
279 |
+
|
280 |
+
output = hidden_states + residual
|
281 |
+
elif self.is_input_vectorized:
|
282 |
+
hidden_states = self.norm_out(hidden_states)
|
283 |
+
logits = self.out(hidden_states)
|
284 |
+
# (batch, self.num_vector_embeds - 1, self.num_latent_pixels)
|
285 |
+
logits = logits.permute(0, 2, 1)
|
286 |
+
|
287 |
+
# log(p(x_0))
|
288 |
+
output = F.log_softmax(logits.double(), dim=1).float()
|
289 |
+
elif self.is_input_patches:
|
290 |
+
# TODO: cleanup!
|
291 |
+
conditioning = self.transformer_blocks[0].norm1.emb(
|
292 |
+
timestep, class_labels, hidden_dtype=hidden_states.dtype
|
293 |
+
)
|
294 |
+
shift, scale = self.proj_out_1(F.silu(conditioning)).chunk(2, dim=1)
|
295 |
+
hidden_states = self.norm_out(hidden_states) * (1 + scale[:, None]) + shift[:, None]
|
296 |
+
hidden_states = self.proj_out_2(hidden_states)
|
297 |
+
|
298 |
+
# unpatchify
|
299 |
+
height = width = int(hidden_states.shape[1] ** 0.5)
|
300 |
+
hidden_states = hidden_states.reshape(
|
301 |
+
shape=(-1, height, width, self.patch_size, self.patch_size, self.out_channels)
|
302 |
+
)
|
303 |
+
hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states)
|
304 |
+
output = hidden_states.reshape(
|
305 |
+
shape=(-1, self.out_channels, height * self.patch_size, width * self.patch_size)
|
306 |
+
)
|
307 |
+
|
308 |
+
if self.alpha is not None:
|
309 |
+
with torch.no_grad():
|
310 |
+
self.alpha.clamp_(0, 1)
|
311 |
+
|
312 |
+
output = self.alpha * input_states + (1 - self.alpha) * output
|
313 |
+
|
314 |
+
if not return_dict:
|
315 |
+
return (output,)
|
316 |
+
|
317 |
+
return Transformer2DModelOutput(sample=output)
|
318 |
+
|
319 |
+
|
320 |
+
@maybe_allow_in_graph
|
321 |
+
class BasicConditionalTransformerBlock(nn.Module):
|
322 |
+
""" transformer block with first frame conditioning """
|
323 |
+
def __init__(
|
324 |
+
self,
|
325 |
+
dim: int,
|
326 |
+
num_attention_heads: int,
|
327 |
+
attention_head_dim: int,
|
328 |
+
dropout=0.0,
|
329 |
+
cross_attention_dim: Optional[int] = None,
|
330 |
+
activation_fn: str = "geglu",
|
331 |
+
num_embeds_ada_norm: Optional[int] = None,
|
332 |
+
attention_bias: bool = False,
|
333 |
+
only_cross_attention: bool = False,
|
334 |
+
double_self_attention: bool = False,
|
335 |
+
upcast_attention: bool = False,
|
336 |
+
norm_elementwise_affine: bool = True,
|
337 |
+
norm_type: str = "layer_norm",
|
338 |
+
final_dropout: bool = False,
|
339 |
+
attention_type: str = "default",
|
340 |
+
# additional
|
341 |
+
n_frames: int = 8,
|
342 |
+
is_temporal: bool = False,
|
343 |
+
augment_temporal_attention: bool = False,
|
344 |
+
rotary_emb=False,
|
345 |
+
):
|
346 |
+
super().__init__()
|
347 |
+
self.n_frames = n_frames
|
348 |
+
self.only_cross_attention = only_cross_attention
|
349 |
+
self.augment_temporal_attention = augment_temporal_attention
|
350 |
+
self.is_temporal = is_temporal
|
351 |
+
|
352 |
+
self.use_ada_layer_norm_zero = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero"
|
353 |
+
self.use_ada_layer_norm = (num_embeds_ada_norm is not None) and norm_type == "ada_norm"
|
354 |
+
|
355 |
+
if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None:
|
356 |
+
raise ValueError(
|
357 |
+
f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to"
|
358 |
+
f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}."
|
359 |
+
)
|
360 |
+
|
361 |
+
# Define 3 blocks. Each block has its own normalization layer.
|
362 |
+
# 1. Self-Attn
|
363 |
+
if self.use_ada_layer_norm:
|
364 |
+
self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm)
|
365 |
+
elif self.use_ada_layer_norm_zero:
|
366 |
+
self.norm1 = AdaLayerNormZero(dim, num_embeds_ada_norm)
|
367 |
+
else:
|
368 |
+
self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine)
|
369 |
+
|
370 |
+
if not is_temporal:
|
371 |
+
self.attn1 = ConditionalAttention(
|
372 |
+
query_dim=dim,
|
373 |
+
heads=num_attention_heads,
|
374 |
+
dim_head=attention_head_dim,
|
375 |
+
dropout=dropout,
|
376 |
+
bias=attention_bias,
|
377 |
+
cross_attention_dim=cross_attention_dim if only_cross_attention else None,
|
378 |
+
upcast_attention=upcast_attention,
|
379 |
+
)
|
380 |
+
else:
|
381 |
+
self.attn1 = TemporalConditionalAttention(
|
382 |
+
query_dim=dim,
|
383 |
+
heads=num_attention_heads,
|
384 |
+
dim_head=attention_head_dim,
|
385 |
+
dropout=dropout,
|
386 |
+
bias=attention_bias,
|
387 |
+
cross_attention_dim=cross_attention_dim if only_cross_attention else None,
|
388 |
+
upcast_attention=upcast_attention,
|
389 |
+
# additional
|
390 |
+
n_frames=n_frames,
|
391 |
+
rotary_emb=rotary_emb,
|
392 |
+
)
|
393 |
+
|
394 |
+
# 2. Cross-Attn
|
395 |
+
if cross_attention_dim is not None or double_self_attention:
|
396 |
+
# We currently only use AdaLayerNormZero for self attention where there will only be one attention block.
|
397 |
+
# I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during
|
398 |
+
# the second cross attention block.
|
399 |
+
self.norm2 = (
|
400 |
+
AdaLayerNorm(dim, num_embeds_ada_norm)
|
401 |
+
if self.use_ada_layer_norm
|
402 |
+
else nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine)
|
403 |
+
)
|
404 |
+
if not is_temporal:
|
405 |
+
self.attn2 = ConditionalAttention(
|
406 |
+
query_dim=dim,
|
407 |
+
cross_attention_dim=cross_attention_dim if not double_self_attention else None,
|
408 |
+
heads=num_attention_heads,
|
409 |
+
dim_head=attention_head_dim,
|
410 |
+
dropout=dropout,
|
411 |
+
bias=attention_bias,
|
412 |
+
upcast_attention=upcast_attention,
|
413 |
+
) # is self-attn if encoder_hidden_states is none
|
414 |
+
else:
|
415 |
+
self.attn2 = TemporalConditionalAttention(
|
416 |
+
query_dim=dim,
|
417 |
+
cross_attention_dim=cross_attention_dim if not double_self_attention else None,
|
418 |
+
heads=num_attention_heads,
|
419 |
+
dim_head=attention_head_dim,
|
420 |
+
dropout=dropout,
|
421 |
+
bias=attention_bias,
|
422 |
+
upcast_attention=upcast_attention,
|
423 |
+
# additional
|
424 |
+
n_frames=n_frames,
|
425 |
+
rotary_emb=rotary_emb,
|
426 |
+
)
|
427 |
+
else:
|
428 |
+
self.norm2 = None
|
429 |
+
self.attn2 = None
|
430 |
+
|
431 |
+
# 3. Feed-forward
|
432 |
+
self.norm3 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine)
|
433 |
+
self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn, final_dropout=final_dropout)
|
434 |
+
|
435 |
+
# 4. Fuser
|
436 |
+
if attention_type == "gated" or attention_type == "gated-text-image":
|
437 |
+
self.fuser = GatedSelfAttentionDense(dim, cross_attention_dim, num_attention_heads, attention_head_dim)
|
438 |
+
|
439 |
+
# let chunk size default to None
|
440 |
+
self._chunk_size = None
|
441 |
+
self._chunk_dim = 0
|
442 |
+
|
443 |
+
def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int):
|
444 |
+
# Sets chunk feed-forward
|
445 |
+
self._chunk_size = chunk_size
|
446 |
+
self._chunk_dim = dim
|
447 |
+
|
448 |
+
def forward(
|
449 |
+
self,
|
450 |
+
hidden_states: torch.FloatTensor,
|
451 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
452 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
453 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
454 |
+
timestep: Optional[torch.LongTensor] = None,
|
455 |
+
cross_attention_kwargs: Dict[str, Any] = None,
|
456 |
+
class_labels: Optional[torch.LongTensor] = None,
|
457 |
+
condition_on_first_frame: bool = False,
|
458 |
+
input_height: Optional[int] = None,
|
459 |
+
input_width: Optional[int] = None,
|
460 |
+
):
|
461 |
+
# Notice that normalization is always applied before the real computation in the following blocks.
|
462 |
+
# 0. Self-Attention
|
463 |
+
if self.use_ada_layer_norm:
|
464 |
+
norm_hidden_states = self.norm1(hidden_states, timestep)
|
465 |
+
elif self.use_ada_layer_norm_zero:
|
466 |
+
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
|
467 |
+
hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype
|
468 |
+
)
|
469 |
+
else:
|
470 |
+
norm_hidden_states = self.norm1(hidden_states)
|
471 |
+
|
472 |
+
# 1. Retrieve lora scale.
|
473 |
+
lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0
|
474 |
+
|
475 |
+
# 2. Prepare GLIGEN inputs
|
476 |
+
cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {}
|
477 |
+
gligen_kwargs = cross_attention_kwargs.pop("gligen", None)
|
478 |
+
|
479 |
+
if condition_on_first_frame:
|
480 |
+
first_frame_hidden_states = rearrange(norm_hidden_states, '(b f) d h -> b f d h', f=self.n_frames)[:, 0, :, :]
|
481 |
+
first_frame_hidden_states = repeat(first_frame_hidden_states, 'b d h -> b f d h', f=self.n_frames)
|
482 |
+
first_frame_hidden_states = rearrange(first_frame_hidden_states, 'b f d h -> (b f) d h')
|
483 |
+
first_frame_concat_hidden_states = torch.cat((norm_hidden_states, first_frame_hidden_states), dim=1)
|
484 |
+
attn_output = self.attn1(
|
485 |
+
norm_hidden_states,
|
486 |
+
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else first_frame_concat_hidden_states,
|
487 |
+
attention_mask=attention_mask,
|
488 |
+
**cross_attention_kwargs,
|
489 |
+
)
|
490 |
+
elif self.is_temporal and self.augment_temporal_attention:
|
491 |
+
first_frame_hidden_states = rearrange(norm_hidden_states, '(b f) d h -> b f d h', f=self.n_frames)[:, 0, :, :]
|
492 |
+
first_frame_hidden_states = rearrange(first_frame_hidden_states, 'b (h w) c -> b h w c', h=input_height, w=input_width)
|
493 |
+
first_frame_hidden_states = first_frame_hidden_states.permute(0, 3, 1, 2)
|
494 |
+
padded_first_frame = torch.nn.functional.pad(first_frame_hidden_states, (1, 1, 1, 1), "replicate")
|
495 |
+
first_frame_windows = padded_first_frame.unfold(2, 3, 1).unfold(3, 3, 1)
|
496 |
+
mask = torch.tensor([[1, 1, 1], [1, 0, 1], [1, 1, 1]], dtype=torch.bool)
|
497 |
+
adjacent_slices = first_frame_windows[:, :, :, :, mask]
|
498 |
+
attn_output = self.attn1(
|
499 |
+
norm_hidden_states,
|
500 |
+
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
|
501 |
+
attention_mask=attention_mask,
|
502 |
+
adjacent_slices=adjacent_slices,
|
503 |
+
**cross_attention_kwargs,
|
504 |
+
)
|
505 |
+
else:
|
506 |
+
attn_output = self.attn1(
|
507 |
+
norm_hidden_states,
|
508 |
+
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
|
509 |
+
attention_mask=attention_mask,
|
510 |
+
**cross_attention_kwargs,
|
511 |
+
)
|
512 |
+
if self.use_ada_layer_norm_zero:
|
513 |
+
attn_output = gate_msa.unsqueeze(1) * attn_output
|
514 |
+
hidden_states = attn_output + hidden_states
|
515 |
+
|
516 |
+
# 2.5 GLIGEN Control
|
517 |
+
if gligen_kwargs is not None:
|
518 |
+
hidden_states = self.fuser(hidden_states, gligen_kwargs["objs"])
|
519 |
+
# 2.5 ends
|
520 |
+
|
521 |
+
# 3. Cross-Attention
|
522 |
+
if self.attn2 is not None:
|
523 |
+
norm_hidden_states = (
|
524 |
+
self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states)
|
525 |
+
)
|
526 |
+
|
527 |
+
attn_output = self.attn2(
|
528 |
+
norm_hidden_states,
|
529 |
+
encoder_hidden_states=encoder_hidden_states,
|
530 |
+
attention_mask=encoder_attention_mask,
|
531 |
+
**cross_attention_kwargs,
|
532 |
+
)
|
533 |
+
hidden_states = attn_output + hidden_states
|
534 |
+
|
535 |
+
# 4. Feed-forward
|
536 |
+
norm_hidden_states = self.norm3(hidden_states)
|
537 |
+
|
538 |
+
if self.use_ada_layer_norm_zero:
|
539 |
+
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
|
540 |
+
|
541 |
+
if self._chunk_size is not None:
|
542 |
+
# "feed_forward_chunk_size" can be used to save memory
|
543 |
+
if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0:
|
544 |
+
raise ValueError(
|
545 |
+
f"`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`."
|
546 |
+
)
|
547 |
+
|
548 |
+
num_chunks = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size
|
549 |
+
ff_output = torch.cat(
|
550 |
+
[
|
551 |
+
self.ff(hid_slice, scale=lora_scale)
|
552 |
+
for hid_slice in norm_hidden_states.chunk(num_chunks, dim=self._chunk_dim)
|
553 |
+
],
|
554 |
+
dim=self._chunk_dim,
|
555 |
+
)
|
556 |
+
else:
|
557 |
+
ff_output = self.ff(norm_hidden_states, scale=lora_scale)
|
558 |
+
|
559 |
+
if self.use_ada_layer_norm_zero:
|
560 |
+
ff_output = gate_mlp.unsqueeze(1) * ff_output
|
561 |
+
|
562 |
+
hidden_states = ff_output + hidden_states
|
563 |
+
|
564 |
+
return hidden_states
|
consisti2v/models/videoldm_unet.py
ADDED
@@ -0,0 +1,1371 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import re
|
3 |
+
from typing import Optional, Tuple, Union, Dict, List, Any
|
4 |
+
from einops import rearrange, repeat
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import torch.nn as nn
|
8 |
+
from diffusers.loaders import UNet2DConditionLoadersMixin
|
9 |
+
from diffusers.models import ModelMixin
|
10 |
+
from diffusers.models.unet_2d_condition import UNet2DConditionOutput
|
11 |
+
from diffusers.models.unet_2d_blocks import UNetMidBlock2DCrossAttn, UNetMidBlock2DSimpleCrossAttn
|
12 |
+
from diffusers.models.embeddings import (
|
13 |
+
GaussianFourierProjection,
|
14 |
+
ImageHintTimeEmbedding,
|
15 |
+
ImageProjection,
|
16 |
+
ImageTimeEmbedding,
|
17 |
+
PositionNet,
|
18 |
+
TextImageProjection,
|
19 |
+
TextImageTimeEmbedding,
|
20 |
+
TextTimeEmbedding,
|
21 |
+
TimestepEmbedding,
|
22 |
+
Timesteps,
|
23 |
+
)
|
24 |
+
from diffusers.models.attention_processor import (
|
25 |
+
ADDED_KV_ATTENTION_PROCESSORS,
|
26 |
+
CROSS_ATTENTION_PROCESSORS,
|
27 |
+
AttentionProcessor,
|
28 |
+
AttnAddedKVProcessor,
|
29 |
+
AttnProcessor,
|
30 |
+
)
|
31 |
+
from diffusers.models.activations import get_activation
|
32 |
+
from diffusers.configuration_utils import register_to_config, ConfigMixin
|
33 |
+
from diffusers.models.modeling_utils import load_state_dict, load_model_dict_into_meta
|
34 |
+
from diffusers.utils import (
|
35 |
+
CONFIG_NAME,
|
36 |
+
DIFFUSERS_CACHE,
|
37 |
+
FLAX_WEIGHTS_NAME,
|
38 |
+
HF_HUB_OFFLINE,
|
39 |
+
SAFETENSORS_WEIGHTS_NAME,
|
40 |
+
WEIGHTS_NAME,
|
41 |
+
_add_variant,
|
42 |
+
_get_model_file,
|
43 |
+
deprecate,
|
44 |
+
is_accelerate_available,
|
45 |
+
is_torch_version,
|
46 |
+
logging,
|
47 |
+
)
|
48 |
+
from diffusers import __version__
|
49 |
+
|
50 |
+
if is_torch_version(">=", "1.9.0"):
|
51 |
+
_LOW_CPU_MEM_USAGE_DEFAULT = True
|
52 |
+
else:
|
53 |
+
_LOW_CPU_MEM_USAGE_DEFAULT = False
|
54 |
+
|
55 |
+
|
56 |
+
if is_accelerate_available():
|
57 |
+
import accelerate
|
58 |
+
from accelerate.utils import set_module_tensor_to_device
|
59 |
+
from accelerate.utils.versions import is_torch_version
|
60 |
+
|
61 |
+
|
62 |
+
|
63 |
+
from .videoldm_unet_blocks import get_down_block, get_up_block, VideoLDMUNetMidBlock2DCrossAttn
|
64 |
+
|
65 |
+
logger = logging.get_logger(__name__)
|
66 |
+
|
67 |
+
|
68 |
+
class VideoLDMUNet3DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin):
|
69 |
+
_supports_gradient_checkpointing = True
|
70 |
+
@register_to_config
|
71 |
+
def __init__(
|
72 |
+
self,
|
73 |
+
sample_size: Optional[int] = None,
|
74 |
+
in_channels: int = 4,
|
75 |
+
out_channels: int = 4,
|
76 |
+
center_input_sample: bool = False,
|
77 |
+
flip_sin_to_cos: bool = True,
|
78 |
+
freq_shift: int = 0,
|
79 |
+
down_block_types: Tuple[str] = (
|
80 |
+
"CrossAttnDownBlock2D", # -> VideoLDMDownBlock
|
81 |
+
"CrossAttnDownBlock2D", # -> VideoLDMDownBlock
|
82 |
+
"CrossAttnDownBlock2D", # -> VideoLDMDownBlock
|
83 |
+
"DownBlock2D",
|
84 |
+
),
|
85 |
+
mid_block_type: Optional[str] = "UNetMidBlock2DCrossAttn",
|
86 |
+
up_block_types: Tuple[str] = (
|
87 |
+
"UpBlock2D",
|
88 |
+
"CrossAttnUpBlock2D", # -> VideoLDMUpBlock
|
89 |
+
"CrossAttnUpBlock2D", # -> VideoLDMUpBlock
|
90 |
+
"CrossAttnUpBlock2D", # -> VideoLDMUpBlock
|
91 |
+
),
|
92 |
+
only_cross_attention: Union[bool, Tuple[bool]] = False,
|
93 |
+
block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
|
94 |
+
layers_per_block: Union[int, Tuple[int]] = 2,
|
95 |
+
downsample_padding: int = 1,
|
96 |
+
mid_block_scale_factor: float = 1,
|
97 |
+
dropout: float = 0.0,
|
98 |
+
act_fn: str = "silu",
|
99 |
+
norm_num_groups: Optional[int] = 32,
|
100 |
+
norm_eps: float = 1e-5,
|
101 |
+
cross_attention_dim: Union[int, Tuple[int]] = 1280,
|
102 |
+
transformer_layers_per_block: Union[int, Tuple[int]] = 1,
|
103 |
+
encoder_hid_dim: Optional[int] = None,
|
104 |
+
encoder_hid_dim_type: Optional[str] = None,
|
105 |
+
attention_head_dim: Union[int, Tuple[int]] = 8,
|
106 |
+
num_attention_heads: Optional[Union[int, Tuple[int]]] = None,
|
107 |
+
dual_cross_attention: bool = False,
|
108 |
+
use_linear_projection: bool = False,
|
109 |
+
class_embed_type: Optional[str] = None,
|
110 |
+
addition_embed_type: Optional[str] = None,
|
111 |
+
addition_time_embed_dim: Optional[int] = None,
|
112 |
+
num_class_embeds: Optional[int] = None,
|
113 |
+
upcast_attention: bool = False,
|
114 |
+
resnet_time_scale_shift: str = "default",
|
115 |
+
resnet_skip_time_act: bool = False,
|
116 |
+
resnet_out_scale_factor: int = 1.0,
|
117 |
+
time_embedding_type: str = "positional",
|
118 |
+
time_embedding_dim: Optional[int] = None,
|
119 |
+
time_embedding_act_fn: Optional[str] = None,
|
120 |
+
timestep_post_act: Optional[str] = None,
|
121 |
+
time_cond_proj_dim: Optional[int] = None,
|
122 |
+
conv_in_kernel: int = 3,
|
123 |
+
conv_out_kernel: int = 3,
|
124 |
+
projection_class_embeddings_input_dim: Optional[int] = None,
|
125 |
+
attention_type: str = "default",
|
126 |
+
class_embeddings_concat: bool = False,
|
127 |
+
mid_block_only_cross_attention: Optional[bool] = None,
|
128 |
+
cross_attention_norm: Optional[str] = None,
|
129 |
+
addition_embed_type_num_heads=64,
|
130 |
+
# additional
|
131 |
+
use_temporal: bool = True,
|
132 |
+
n_frames: int = 8,
|
133 |
+
n_temp_heads: int = 8,
|
134 |
+
first_frame_condition_mode: str = "none",
|
135 |
+
augment_temporal_attention: bool = False,
|
136 |
+
temp_pos_embedding: str = "sinusoidal",
|
137 |
+
use_frame_stride_condition: bool = False,
|
138 |
+
):
|
139 |
+
super().__init__()
|
140 |
+
|
141 |
+
rotary_emb = False
|
142 |
+
if temp_pos_embedding == "rotary":
|
143 |
+
# from rotary_embedding_torch import RotaryEmbedding
|
144 |
+
# rotary_emb = RotaryEmbedding(32)
|
145 |
+
# self.rotary_emb = rotary_emb
|
146 |
+
rotary_emb = True
|
147 |
+
self.rotary_emb = rotary_emb
|
148 |
+
|
149 |
+
self.use_temporal = use_temporal
|
150 |
+
self.augment_temporal_attention = augment_temporal_attention
|
151 |
+
|
152 |
+
assert first_frame_condition_mode in ["none", "concat", "conv2d", "input_only"], f"first_frame_condition_mode: {first_frame_condition_mode} must be one of ['none', 'concat', 'conv2d', 'input_only']"
|
153 |
+
self.first_frame_condition_mode = first_frame_condition_mode
|
154 |
+
latent_channels = in_channels
|
155 |
+
|
156 |
+
self.sample_size = sample_size
|
157 |
+
|
158 |
+
if num_attention_heads is not None:
|
159 |
+
raise ValueError(
|
160 |
+
"At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19."
|
161 |
+
)
|
162 |
+
|
163 |
+
num_attention_heads = num_attention_heads or attention_head_dim
|
164 |
+
|
165 |
+
# Check inputs
|
166 |
+
if len(down_block_types) != len(up_block_types):
|
167 |
+
raise ValueError(
|
168 |
+
f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}."
|
169 |
+
)
|
170 |
+
|
171 |
+
if len(block_out_channels) != len(down_block_types):
|
172 |
+
raise ValueError(
|
173 |
+
f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
|
174 |
+
)
|
175 |
+
|
176 |
+
if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types):
|
177 |
+
raise ValueError(
|
178 |
+
f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}."
|
179 |
+
)
|
180 |
+
|
181 |
+
if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types):
|
182 |
+
raise ValueError(
|
183 |
+
f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
|
184 |
+
)
|
185 |
+
|
186 |
+
if not isinstance(attention_head_dim, int) and len(attention_head_dim) != len(down_block_types):
|
187 |
+
raise ValueError(
|
188 |
+
f"Must provide the same number of `attention_head_dim` as `down_block_types`. `attention_head_dim`: {attention_head_dim}. `down_block_types`: {down_block_types}."
|
189 |
+
)
|
190 |
+
|
191 |
+
if isinstance(cross_attention_dim, list) and len(cross_attention_dim) != len(down_block_types):
|
192 |
+
raise ValueError(
|
193 |
+
f"Must provide the same number of `cross_attention_dim` as `down_block_types`. `cross_attention_dim`: {cross_attention_dim}. `down_block_types`: {down_block_types}."
|
194 |
+
)
|
195 |
+
|
196 |
+
if not isinstance(layers_per_block, int) and len(layers_per_block) != len(down_block_types):
|
197 |
+
raise ValueError(
|
198 |
+
f"Must provide the same number of `layers_per_block` as `down_block_types`. `layers_per_block`: {layers_per_block}. `down_block_types`: {down_block_types}."
|
199 |
+
)
|
200 |
+
|
201 |
+
# input
|
202 |
+
conv_in_padding = (conv_in_kernel - 1) // 2
|
203 |
+
self.conv_in = nn.Conv2d(
|
204 |
+
in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding
|
205 |
+
)
|
206 |
+
|
207 |
+
# time
|
208 |
+
if time_embedding_type == "fourier":
|
209 |
+
time_embed_dim = time_embedding_dim or block_out_channels[0] * 2
|
210 |
+
if time_embed_dim % 2 != 0:
|
211 |
+
raise ValueError(f"`time_embed_dim` should be divisible by 2, but is {time_embed_dim}.")
|
212 |
+
self.time_proj = GaussianFourierProjection(
|
213 |
+
time_embed_dim // 2, set_W_to_weight=False, log=False, flip_sin_to_cos=flip_sin_to_cos
|
214 |
+
)
|
215 |
+
timestep_input_dim = time_embed_dim
|
216 |
+
elif time_embedding_type == "positional":
|
217 |
+
time_embed_dim = time_embedding_dim or block_out_channels[0] * 4
|
218 |
+
|
219 |
+
self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
|
220 |
+
timestep_input_dim = block_out_channels[0]
|
221 |
+
else:
|
222 |
+
raise ValueError(
|
223 |
+
f"{time_embedding_type} does not exist. Please make sure to use one of `fourier` or `positional`."
|
224 |
+
)
|
225 |
+
|
226 |
+
self.time_embedding = TimestepEmbedding(
|
227 |
+
timestep_input_dim,
|
228 |
+
time_embed_dim,
|
229 |
+
act_fn=act_fn,
|
230 |
+
post_act_fn=timestep_post_act,
|
231 |
+
cond_proj_dim=time_cond_proj_dim,
|
232 |
+
)
|
233 |
+
|
234 |
+
self.use_frame_stride_condition = use_frame_stride_condition
|
235 |
+
if self.use_frame_stride_condition:
|
236 |
+
self.frame_stride_embedding = TimestepEmbedding(
|
237 |
+
timestep_input_dim,
|
238 |
+
time_embed_dim,
|
239 |
+
act_fn=act_fn,
|
240 |
+
post_act_fn=timestep_post_act,
|
241 |
+
cond_proj_dim=time_cond_proj_dim,
|
242 |
+
)
|
243 |
+
# zero init
|
244 |
+
nn.init.zeros_(self.frame_stride_embedding.linear_2.weight)
|
245 |
+
nn.init.zeros_(self.frame_stride_embedding.linear_2.bias)
|
246 |
+
|
247 |
+
if encoder_hid_dim_type is None and encoder_hid_dim is not None:
|
248 |
+
encoder_hid_dim_type = "text_proj"
|
249 |
+
self.register_to_config(encoder_hid_dim_type=encoder_hid_dim_type)
|
250 |
+
logger.info("encoder_hid_dim_type defaults to 'text_proj' as `encoder_hid_dim` is defined.")
|
251 |
+
|
252 |
+
if encoder_hid_dim is None and encoder_hid_dim_type is not None:
|
253 |
+
raise ValueError(
|
254 |
+
f"`encoder_hid_dim` has to be defined when `encoder_hid_dim_type` is set to {encoder_hid_dim_type}."
|
255 |
+
)
|
256 |
+
|
257 |
+
if encoder_hid_dim_type == "text_proj":
|
258 |
+
self.encoder_hid_proj = nn.Linear(encoder_hid_dim, cross_attention_dim)
|
259 |
+
elif encoder_hid_dim_type == "text_image_proj":
|
260 |
+
# image_embed_dim DOESN'T have to be `cross_attention_dim`. To not clutter the __init__ too much
|
261 |
+
# they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
|
262 |
+
# case when `addition_embed_type == "text_image_proj"` (Kadinsky 2.1)`
|
263 |
+
self.encoder_hid_proj = TextImageProjection(
|
264 |
+
text_embed_dim=encoder_hid_dim,
|
265 |
+
image_embed_dim=cross_attention_dim,
|
266 |
+
cross_attention_dim=cross_attention_dim,
|
267 |
+
)
|
268 |
+
elif encoder_hid_dim_type == "image_proj":
|
269 |
+
# Kandinsky 2.2
|
270 |
+
self.encoder_hid_proj = ImageProjection(
|
271 |
+
image_embed_dim=encoder_hid_dim,
|
272 |
+
cross_attention_dim=cross_attention_dim,
|
273 |
+
)
|
274 |
+
elif encoder_hid_dim_type is not None:
|
275 |
+
raise ValueError(
|
276 |
+
f"encoder_hid_dim_type: {encoder_hid_dim_type} must be None, 'text_proj' or 'text_image_proj'."
|
277 |
+
)
|
278 |
+
else:
|
279 |
+
self.encoder_hid_proj = None
|
280 |
+
|
281 |
+
# class embedding
|
282 |
+
if class_embed_type is None and num_class_embeds is not None:
|
283 |
+
self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
|
284 |
+
elif class_embed_type == "timestep":
|
285 |
+
self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim, act_fn=act_fn)
|
286 |
+
elif class_embed_type == "identity":
|
287 |
+
self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
|
288 |
+
elif class_embed_type == "projection":
|
289 |
+
if projection_class_embeddings_input_dim is None:
|
290 |
+
raise ValueError(
|
291 |
+
"`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set"
|
292 |
+
)
|
293 |
+
# The projection `class_embed_type` is the same as the timestep `class_embed_type` except
|
294 |
+
# 1. the `class_labels` inputs are not first converted to sinusoidal embeddings
|
295 |
+
# 2. it projects from an arbitrary input dimension.
|
296 |
+
#
|
297 |
+
# Note that `TimestepEmbedding` is quite general, being mainly linear layers and activations.
|
298 |
+
# When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings.
|
299 |
+
# As a result, `TimestepEmbedding` can be passed arbitrary vectors.
|
300 |
+
self.class_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
|
301 |
+
elif class_embed_type == "simple_projection":
|
302 |
+
if projection_class_embeddings_input_dim is None:
|
303 |
+
raise ValueError(
|
304 |
+
"`class_embed_type`: 'simple_projection' requires `projection_class_embeddings_input_dim` be set"
|
305 |
+
)
|
306 |
+
self.class_embedding = nn.Linear(projection_class_embeddings_input_dim, time_embed_dim)
|
307 |
+
else:
|
308 |
+
self.class_embedding = None
|
309 |
+
|
310 |
+
if addition_embed_type == "text":
|
311 |
+
if encoder_hid_dim is not None:
|
312 |
+
text_time_embedding_from_dim = encoder_hid_dim
|
313 |
+
else:
|
314 |
+
text_time_embedding_from_dim = cross_attention_dim
|
315 |
+
|
316 |
+
self.add_embedding = TextTimeEmbedding(
|
317 |
+
text_time_embedding_from_dim, time_embed_dim, num_heads=addition_embed_type_num_heads
|
318 |
+
)
|
319 |
+
elif addition_embed_type == "text_image":
|
320 |
+
# text_embed_dim and image_embed_dim DON'T have to be `cross_attention_dim`. To not clutter the __init__ too much
|
321 |
+
# they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
|
322 |
+
# case when `addition_embed_type == "text_image"` (Kadinsky 2.1)`
|
323 |
+
self.add_embedding = TextImageTimeEmbedding(
|
324 |
+
text_embed_dim=cross_attention_dim, image_embed_dim=cross_attention_dim, time_embed_dim=time_embed_dim
|
325 |
+
)
|
326 |
+
elif addition_embed_type == "text_time":
|
327 |
+
self.add_time_proj = Timesteps(addition_time_embed_dim, flip_sin_to_cos, freq_shift)
|
328 |
+
self.add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
|
329 |
+
elif addition_embed_type == "image":
|
330 |
+
# Kandinsky 2.2
|
331 |
+
self.add_embedding = ImageTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim)
|
332 |
+
elif addition_embed_type == "image_hint":
|
333 |
+
# Kandinsky 2.2 ControlNet
|
334 |
+
self.add_embedding = ImageHintTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim)
|
335 |
+
elif addition_embed_type is not None:
|
336 |
+
raise ValueError(f"addition_embed_type: {addition_embed_type} must be None, 'text' or 'text_image'.")
|
337 |
+
|
338 |
+
if time_embedding_act_fn is None:
|
339 |
+
self.time_embed_act = None
|
340 |
+
else:
|
341 |
+
self.time_embed_act = get_activation(time_embedding_act_fn)
|
342 |
+
|
343 |
+
self.down_blocks = nn.ModuleList([])
|
344 |
+
self.up_blocks = nn.ModuleList([])
|
345 |
+
|
346 |
+
if isinstance(only_cross_attention, bool):
|
347 |
+
if mid_block_only_cross_attention is None:
|
348 |
+
mid_block_only_cross_attention = only_cross_attention
|
349 |
+
|
350 |
+
only_cross_attention = [only_cross_attention] * len(down_block_types)
|
351 |
+
|
352 |
+
if mid_block_only_cross_attention is None:
|
353 |
+
mid_block_only_cross_attention = False
|
354 |
+
|
355 |
+
if isinstance(num_attention_heads, int):
|
356 |
+
num_attention_heads = (num_attention_heads,) * len(down_block_types)
|
357 |
+
|
358 |
+
if isinstance(attention_head_dim, int):
|
359 |
+
attention_head_dim = (attention_head_dim,) * len(down_block_types)
|
360 |
+
|
361 |
+
if isinstance(cross_attention_dim, int):
|
362 |
+
cross_attention_dim = (cross_attention_dim,) * len(down_block_types)
|
363 |
+
|
364 |
+
if isinstance(layers_per_block, int):
|
365 |
+
layers_per_block = [layers_per_block] * len(down_block_types)
|
366 |
+
|
367 |
+
if isinstance(transformer_layers_per_block, int):
|
368 |
+
transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types)
|
369 |
+
|
370 |
+
if class_embeddings_concat:
|
371 |
+
# The time embeddings are concatenated with the class embeddings. The dimension of the
|
372 |
+
# time embeddings passed to the down, middle, and up blocks is twice the dimension of the
|
373 |
+
# regular time embeddings
|
374 |
+
blocks_time_embed_dim = time_embed_dim * 2
|
375 |
+
else:
|
376 |
+
blocks_time_embed_dim = time_embed_dim
|
377 |
+
# down
|
378 |
+
output_channel = block_out_channels[0]
|
379 |
+
for i, down_block_type in enumerate(down_block_types):
|
380 |
+
input_channel = output_channel
|
381 |
+
output_channel = block_out_channels[i]
|
382 |
+
is_final_block = i == len(block_out_channels) - 1
|
383 |
+
|
384 |
+
down_block = get_down_block(
|
385 |
+
down_block_type,
|
386 |
+
num_layers=layers_per_block[i],
|
387 |
+
transformer_layers_per_block=transformer_layers_per_block[i],
|
388 |
+
in_channels=input_channel,
|
389 |
+
out_channels=output_channel,
|
390 |
+
temb_channels=blocks_time_embed_dim,
|
391 |
+
add_downsample=not is_final_block,
|
392 |
+
resnet_eps=norm_eps,
|
393 |
+
resnet_act_fn=act_fn,
|
394 |
+
resnet_groups=norm_num_groups,
|
395 |
+
cross_attention_dim=cross_attention_dim[i],
|
396 |
+
num_attention_heads=num_attention_heads[i],
|
397 |
+
downsample_padding=downsample_padding,
|
398 |
+
dual_cross_attention=dual_cross_attention,
|
399 |
+
use_linear_projection=use_linear_projection,
|
400 |
+
only_cross_attention=only_cross_attention[i],
|
401 |
+
upcast_attention=upcast_attention,
|
402 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
403 |
+
attention_type=attention_type,
|
404 |
+
resnet_skip_time_act=resnet_skip_time_act,
|
405 |
+
resnet_out_scale_factor=resnet_out_scale_factor,
|
406 |
+
cross_attention_norm=cross_attention_norm,
|
407 |
+
attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
|
408 |
+
dropout=dropout,
|
409 |
+
# additional
|
410 |
+
use_temporal=use_temporal,
|
411 |
+
augment_temporal_attention=augment_temporal_attention,
|
412 |
+
n_frames=n_frames,
|
413 |
+
n_temp_heads=n_temp_heads,
|
414 |
+
first_frame_condition_mode=first_frame_condition_mode,
|
415 |
+
latent_channels=latent_channels,
|
416 |
+
rotary_emb=rotary_emb,
|
417 |
+
)
|
418 |
+
self.down_blocks.append(down_block)
|
419 |
+
|
420 |
+
# mid
|
421 |
+
if mid_block_type == "UNetMidBlock2DCrossAttn":
|
422 |
+
self.mid_block = VideoLDMUNetMidBlock2DCrossAttn(
|
423 |
+
transformer_layers_per_block=transformer_layers_per_block[-1],
|
424 |
+
in_channels=block_out_channels[-1],
|
425 |
+
temb_channels=blocks_time_embed_dim,
|
426 |
+
dropout=dropout,
|
427 |
+
resnet_eps=norm_eps,
|
428 |
+
resnet_act_fn=act_fn,
|
429 |
+
output_scale_factor=mid_block_scale_factor,
|
430 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
431 |
+
cross_attention_dim=cross_attention_dim[-1],
|
432 |
+
num_attention_heads=num_attention_heads[-1],
|
433 |
+
resnet_groups=norm_num_groups,
|
434 |
+
dual_cross_attention=dual_cross_attention,
|
435 |
+
use_linear_projection=use_linear_projection,
|
436 |
+
upcast_attention=upcast_attention,
|
437 |
+
attention_type=attention_type,
|
438 |
+
# additional
|
439 |
+
use_temporal=use_temporal,
|
440 |
+
n_frames=n_frames,
|
441 |
+
first_frame_condition_mode=first_frame_condition_mode,
|
442 |
+
latent_channels=latent_channels,
|
443 |
+
)
|
444 |
+
elif mid_block_type == "UNetMidBlock2DSimpleCrossAttn":
|
445 |
+
self.mid_block = UNetMidBlock2DSimpleCrossAttn(
|
446 |
+
in_channels=block_out_channels[-1],
|
447 |
+
temb_channels=blocks_time_embed_dim,
|
448 |
+
dropout=dropout,
|
449 |
+
resnet_eps=norm_eps,
|
450 |
+
resnet_act_fn=act_fn,
|
451 |
+
output_scale_factor=mid_block_scale_factor,
|
452 |
+
cross_attention_dim=cross_attention_dim[-1],
|
453 |
+
attention_head_dim=attention_head_dim[-1],
|
454 |
+
resnet_groups=norm_num_groups,
|
455 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
456 |
+
skip_time_act=resnet_skip_time_act,
|
457 |
+
only_cross_attention=mid_block_only_cross_attention,
|
458 |
+
cross_attention_norm=cross_attention_norm,
|
459 |
+
)
|
460 |
+
elif mid_block_type is None:
|
461 |
+
self.mid_block = None
|
462 |
+
else:
|
463 |
+
raise ValueError(f"unknown mid_block_type : {mid_block_type}")
|
464 |
+
|
465 |
+
# count how many layers upsample the images
|
466 |
+
self.num_upsamplers = 0
|
467 |
+
|
468 |
+
# up
|
469 |
+
reversed_block_out_channels = list(reversed(block_out_channels))
|
470 |
+
reversed_num_attention_heads = list(reversed(num_attention_heads))
|
471 |
+
reversed_layers_per_block = list(reversed(layers_per_block))
|
472 |
+
reversed_cross_attention_dim = list(reversed(cross_attention_dim))
|
473 |
+
reversed_transformer_layers_per_block = list(reversed(transformer_layers_per_block))
|
474 |
+
only_cross_attention = list(reversed(only_cross_attention))
|
475 |
+
|
476 |
+
output_channel = reversed_block_out_channels[0]
|
477 |
+
for i, up_block_type in enumerate(up_block_types):
|
478 |
+
is_final_block = i == len(block_out_channels) - 1
|
479 |
+
|
480 |
+
prev_output_channel = output_channel
|
481 |
+
output_channel = reversed_block_out_channels[i]
|
482 |
+
input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]
|
483 |
+
|
484 |
+
# add upsample block for all BUT final layer
|
485 |
+
if not is_final_block:
|
486 |
+
add_upsample = True
|
487 |
+
self.num_upsamplers += 1
|
488 |
+
else:
|
489 |
+
add_upsample = False
|
490 |
+
|
491 |
+
up_block = get_up_block(
|
492 |
+
up_block_type,
|
493 |
+
num_layers=reversed_layers_per_block[i] + 1,
|
494 |
+
transformer_layers_per_block=reversed_transformer_layers_per_block[i],
|
495 |
+
in_channels=input_channel,
|
496 |
+
out_channels=output_channel,
|
497 |
+
prev_output_channel=prev_output_channel,
|
498 |
+
temb_channels=blocks_time_embed_dim,
|
499 |
+
add_upsample=add_upsample,
|
500 |
+
resnet_eps=norm_eps,
|
501 |
+
resnet_act_fn=act_fn,
|
502 |
+
resnet_groups=norm_num_groups,
|
503 |
+
cross_attention_dim=reversed_cross_attention_dim[i],
|
504 |
+
num_attention_heads=reversed_num_attention_heads[i],
|
505 |
+
dual_cross_attention=dual_cross_attention,
|
506 |
+
use_linear_projection=use_linear_projection,
|
507 |
+
only_cross_attention=only_cross_attention[i],
|
508 |
+
upcast_attention=upcast_attention,
|
509 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
510 |
+
attention_type=attention_type,
|
511 |
+
resnet_skip_time_act=resnet_skip_time_act,
|
512 |
+
resnet_out_scale_factor=resnet_out_scale_factor,
|
513 |
+
cross_attention_norm=cross_attention_norm,
|
514 |
+
attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
|
515 |
+
dropout=dropout,
|
516 |
+
# additional
|
517 |
+
use_temporal=use_temporal,
|
518 |
+
augment_temporal_attention=augment_temporal_attention,
|
519 |
+
n_frames=n_frames,
|
520 |
+
n_temp_heads=n_temp_heads,
|
521 |
+
first_frame_condition_mode=first_frame_condition_mode,
|
522 |
+
latent_channels=latent_channels,
|
523 |
+
rotary_emb=rotary_emb,
|
524 |
+
)
|
525 |
+
self.up_blocks.append(up_block)
|
526 |
+
prev_output_channel = output_channel
|
527 |
+
|
528 |
+
# out
|
529 |
+
if norm_num_groups is not None:
|
530 |
+
self.conv_norm_out = nn.GroupNorm(
|
531 |
+
num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps
|
532 |
+
)
|
533 |
+
|
534 |
+
self.conv_act = get_activation(act_fn)
|
535 |
+
|
536 |
+
else:
|
537 |
+
self.conv_norm_out = None
|
538 |
+
self.conv_act = None
|
539 |
+
|
540 |
+
conv_out_padding = (conv_out_kernel - 1) // 2
|
541 |
+
self.conv_out = nn.Conv2d(
|
542 |
+
block_out_channels[0], out_channels, kernel_size=conv_out_kernel, padding=conv_out_padding
|
543 |
+
)
|
544 |
+
|
545 |
+
@property
|
546 |
+
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
547 |
+
r"""
|
548 |
+
Returns:
|
549 |
+
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
550 |
+
indexed by its weight name.
|
551 |
+
"""
|
552 |
+
# set recursively
|
553 |
+
processors = {}
|
554 |
+
|
555 |
+
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
|
556 |
+
if hasattr(module, "get_processor"):
|
557 |
+
processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True)
|
558 |
+
|
559 |
+
for sub_name, child in module.named_children():
|
560 |
+
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
561 |
+
|
562 |
+
return processors
|
563 |
+
|
564 |
+
for name, module in self.named_children():
|
565 |
+
fn_recursive_add_processors(name, module, processors)
|
566 |
+
|
567 |
+
return processors
|
568 |
+
|
569 |
+
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
|
570 |
+
r"""
|
571 |
+
Sets the attention processor to use to compute attention.
|
572 |
+
|
573 |
+
Parameters:
|
574 |
+
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
575 |
+
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
576 |
+
for **all** `Attention` layers.
|
577 |
+
|
578 |
+
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
579 |
+
processor. This is strongly recommended when setting trainable attention processors.
|
580 |
+
|
581 |
+
"""
|
582 |
+
count = len(self.attn_processors.keys())
|
583 |
+
|
584 |
+
if isinstance(processor, dict) and len(processor) != count:
|
585 |
+
raise ValueError(
|
586 |
+
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
587 |
+
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
588 |
+
)
|
589 |
+
|
590 |
+
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
591 |
+
if hasattr(module, "set_processor"):
|
592 |
+
if not isinstance(processor, dict):
|
593 |
+
module.set_processor(processor)
|
594 |
+
else:
|
595 |
+
module.set_processor(processor.pop(f"{name}.processor"))
|
596 |
+
|
597 |
+
for sub_name, child in module.named_children():
|
598 |
+
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
599 |
+
|
600 |
+
for name, module in self.named_children():
|
601 |
+
fn_recursive_attn_processor(name, module, processor)
|
602 |
+
|
603 |
+
def set_default_attn_processor(self):
|
604 |
+
"""
|
605 |
+
Disables custom attention processors and sets the default attention implementation.
|
606 |
+
"""
|
607 |
+
if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
|
608 |
+
processor = AttnAddedKVProcessor()
|
609 |
+
elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
|
610 |
+
processor = AttnProcessor()
|
611 |
+
else:
|
612 |
+
raise ValueError(
|
613 |
+
f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
|
614 |
+
)
|
615 |
+
|
616 |
+
self.set_attn_processor(processor)
|
617 |
+
|
618 |
+
def set_attention_slice(self, slice_size):
|
619 |
+
r"""
|
620 |
+
Enable sliced attention computation.
|
621 |
+
|
622 |
+
When this option is enabled, the attention module splits the input tensor in slices to compute attention in
|
623 |
+
several steps. This is useful for saving some memory in exchange for a small decrease in speed.
|
624 |
+
|
625 |
+
Args:
|
626 |
+
slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
|
627 |
+
When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If
|
628 |
+
`"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is
|
629 |
+
provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
|
630 |
+
must be a multiple of `slice_size`.
|
631 |
+
"""
|
632 |
+
sliceable_head_dims = []
|
633 |
+
|
634 |
+
def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module):
|
635 |
+
if hasattr(module, "set_attention_slice"):
|
636 |
+
sliceable_head_dims.append(module.sliceable_head_dim)
|
637 |
+
|
638 |
+
for child in module.children():
|
639 |
+
fn_recursive_retrieve_sliceable_dims(child)
|
640 |
+
|
641 |
+
# retrieve number of attention layers
|
642 |
+
for module in self.children():
|
643 |
+
fn_recursive_retrieve_sliceable_dims(module)
|
644 |
+
|
645 |
+
num_sliceable_layers = len(sliceable_head_dims)
|
646 |
+
|
647 |
+
if slice_size == "auto":
|
648 |
+
# half the attention head size is usually a good trade-off between
|
649 |
+
# speed and memory
|
650 |
+
slice_size = [dim // 2 for dim in sliceable_head_dims]
|
651 |
+
elif slice_size == "max":
|
652 |
+
# make smallest slice possible
|
653 |
+
slice_size = num_sliceable_layers * [1]
|
654 |
+
|
655 |
+
slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
|
656 |
+
|
657 |
+
if len(slice_size) != len(sliceable_head_dims):
|
658 |
+
raise ValueError(
|
659 |
+
f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
|
660 |
+
f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
|
661 |
+
)
|
662 |
+
|
663 |
+
for i in range(len(slice_size)):
|
664 |
+
size = slice_size[i]
|
665 |
+
dim = sliceable_head_dims[i]
|
666 |
+
if size is not None and size > dim:
|
667 |
+
raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
|
668 |
+
|
669 |
+
# Recursively walk through all the children.
|
670 |
+
# Any children which exposes the set_attention_slice method
|
671 |
+
# gets the message
|
672 |
+
def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
|
673 |
+
if hasattr(module, "set_attention_slice"):
|
674 |
+
module.set_attention_slice(slice_size.pop())
|
675 |
+
|
676 |
+
for child in module.children():
|
677 |
+
fn_recursive_set_attention_slice(child, slice_size)
|
678 |
+
|
679 |
+
reversed_slice_size = list(reversed(slice_size))
|
680 |
+
for module in self.children():
|
681 |
+
fn_recursive_set_attention_slice(module, reversed_slice_size)
|
682 |
+
|
683 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
684 |
+
if hasattr(module, "gradient_checkpointing"):
|
685 |
+
module.gradient_checkpointing = value
|
686 |
+
|
687 |
+
def forward(
|
688 |
+
self,
|
689 |
+
sample: torch.FloatTensor,
|
690 |
+
timestep: Union[torch.Tensor, float, int],
|
691 |
+
encoder_hidden_states: torch.Tensor,
|
692 |
+
class_labels: Optional[torch.Tensor] = None,
|
693 |
+
timestep_cond: Optional[torch.Tensor] = None,
|
694 |
+
attention_mask: Optional[torch.Tensor] = None,
|
695 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
696 |
+
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
|
697 |
+
down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
|
698 |
+
mid_block_additional_residual: Optional[torch.Tensor] = None,
|
699 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
700 |
+
return_dict: bool = True,
|
701 |
+
# additional
|
702 |
+
first_frame_latents: Optional[torch.Tensor] = None,
|
703 |
+
frame_stride: Optional[Union[torch.Tensor, float, int]] = None,
|
704 |
+
) -> Union[UNet2DConditionOutput, Tuple]:
|
705 |
+
# reshape video data
|
706 |
+
assert sample.dim() == 5, f"Expected hidden_states to have ndim=5, but got ndim={sample.dim()}."
|
707 |
+
video_length = sample.shape[2]
|
708 |
+
|
709 |
+
if first_frame_latents is not None:
|
710 |
+
assert self.config.first_frame_condition_mode != "none", "first_frame_latents is not None, but first_frame_condition_mode is 'none'."
|
711 |
+
|
712 |
+
if self.config.first_frame_condition_mode != "none":
|
713 |
+
sample = torch.cat([first_frame_latents, sample], dim=2)
|
714 |
+
video_length += 1
|
715 |
+
|
716 |
+
# copy conditioning embeddings for cross attention
|
717 |
+
if encoder_hidden_states is not None:
|
718 |
+
encoder_hidden_states = repeat(encoder_hidden_states, 'b n c -> (b f) n c', f=video_length)
|
719 |
+
|
720 |
+
sample = rearrange(sample, "b c f h w -> (b f) c h w")
|
721 |
+
|
722 |
+
# By default samples have to be AT least a multiple of the overall upsampling factor.
|
723 |
+
# The overall upsampling factor is equal to 2 ** (# num of upsampling layers).
|
724 |
+
# However, the upsampling interpolation output size can be forced to fit any upsampling size
|
725 |
+
# on the fly if necessary.
|
726 |
+
default_overall_up_factor = 2**self.num_upsamplers
|
727 |
+
|
728 |
+
# upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
|
729 |
+
forward_upsample_size = False
|
730 |
+
upsample_size = None
|
731 |
+
|
732 |
+
if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]):
|
733 |
+
logger.info("Forward upsample size to force interpolation output size.")
|
734 |
+
forward_upsample_size = True
|
735 |
+
|
736 |
+
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension
|
737 |
+
# expects mask of shape:
|
738 |
+
# [batch, key_tokens]
|
739 |
+
# adds singleton query_tokens dimension:
|
740 |
+
# [batch, 1, key_tokens]
|
741 |
+
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
|
742 |
+
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
|
743 |
+
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
|
744 |
+
if attention_mask is not None:
|
745 |
+
# assume that mask is expressed as:
|
746 |
+
# (1 = keep, 0 = discard)
|
747 |
+
# convert mask into a bias that can be added to attention scores:
|
748 |
+
# (keep = +0, discard = -10000.0)
|
749 |
+
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
|
750 |
+
attention_mask = attention_mask.unsqueeze(1)
|
751 |
+
|
752 |
+
# convert encoder_attention_mask to a bias the same way we do for attention_mask
|
753 |
+
if encoder_attention_mask is not None:
|
754 |
+
encoder_attention_mask = (1 - encoder_attention_mask.to(sample.dtype)) * -10000.0
|
755 |
+
encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
|
756 |
+
|
757 |
+
# 0. center input if necessary
|
758 |
+
if self.config.center_input_sample:
|
759 |
+
sample = 2 * sample - 1.0
|
760 |
+
|
761 |
+
# 1. time
|
762 |
+
timesteps = timestep
|
763 |
+
if not torch.is_tensor(timesteps):
|
764 |
+
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
|
765 |
+
# This would be a good case for the `match` statement (Python 3.10+)
|
766 |
+
is_mps = sample.device.type == "mps"
|
767 |
+
if isinstance(timestep, float):
|
768 |
+
dtype = torch.float32 if is_mps else torch.float64
|
769 |
+
else:
|
770 |
+
dtype = torch.int32 if is_mps else torch.int64
|
771 |
+
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
|
772 |
+
elif len(timesteps.shape) == 0:
|
773 |
+
timesteps = timesteps[None].to(sample.device)
|
774 |
+
|
775 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
776 |
+
timesteps = timesteps.expand(sample.shape[0])
|
777 |
+
|
778 |
+
t_emb = self.time_proj(timesteps)
|
779 |
+
|
780 |
+
# `Timesteps` does not contain any weights and will always return f32 tensors
|
781 |
+
# but time_embedding might actually be running in fp16. so we need to cast here.
|
782 |
+
# there might be better ways to encapsulate this.
|
783 |
+
t_emb = t_emb.to(dtype=sample.dtype)
|
784 |
+
|
785 |
+
emb = self.time_embedding(t_emb, timestep_cond)
|
786 |
+
|
787 |
+
if self.use_frame_stride_condition:
|
788 |
+
if not torch.is_tensor(frame_stride):
|
789 |
+
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
|
790 |
+
# This would be a good case for the `match` statement (Python 3.10+)
|
791 |
+
is_mps = sample.device.type == "mps"
|
792 |
+
if isinstance(timestep, float):
|
793 |
+
dtype = torch.float32 if is_mps else torch.float64
|
794 |
+
else:
|
795 |
+
dtype = torch.int32 if is_mps else torch.int64
|
796 |
+
frame_stride = torch.tensor([frame_stride], dtype=dtype, device=sample.device)
|
797 |
+
elif len(frame_stride.shape) == 0:
|
798 |
+
frame_stride = frame_stride[None].to(sample.device)
|
799 |
+
|
800 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
801 |
+
frame_stride = frame_stride.expand(sample.shape[0])
|
802 |
+
|
803 |
+
fs_emb = self.time_proj(frame_stride)
|
804 |
+
|
805 |
+
# `Timesteps` does not contain any weights and will always return f32 tensors
|
806 |
+
# but time_embedding might actually be running in fp16. so we need to cast here.
|
807 |
+
# there might be better ways to encapsulate this.
|
808 |
+
fs_emb = fs_emb.to(dtype=sample.dtype)
|
809 |
+
|
810 |
+
fs_emb = self.frame_stride_embedding(fs_emb, timestep_cond)
|
811 |
+
emb = emb + fs_emb
|
812 |
+
|
813 |
+
aug_emb = None
|
814 |
+
|
815 |
+
if self.class_embedding is not None:
|
816 |
+
if class_labels is None:
|
817 |
+
raise ValueError("class_labels should be provided when num_class_embeds > 0")
|
818 |
+
|
819 |
+
if self.config.class_embed_type == "timestep":
|
820 |
+
class_labels = self.time_proj(class_labels)
|
821 |
+
|
822 |
+
# `Timesteps` does not contain any weights and will always return f32 tensors
|
823 |
+
# there might be better ways to encapsulate this.
|
824 |
+
class_labels = class_labels.to(dtype=sample.dtype)
|
825 |
+
|
826 |
+
class_emb = self.class_embedding(class_labels).to(dtype=sample.dtype)
|
827 |
+
|
828 |
+
if self.config.class_embeddings_concat:
|
829 |
+
emb = torch.cat([emb, class_emb], dim=-1)
|
830 |
+
else:
|
831 |
+
emb = emb + class_emb
|
832 |
+
|
833 |
+
if self.config.addition_embed_type == "text":
|
834 |
+
aug_emb = self.add_embedding(encoder_hidden_states)
|
835 |
+
elif self.config.addition_embed_type == "text_image":
|
836 |
+
# Kandinsky 2.1 - style
|
837 |
+
if "image_embeds" not in added_cond_kwargs:
|
838 |
+
raise ValueError(
|
839 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
|
840 |
+
)
|
841 |
+
|
842 |
+
image_embs = added_cond_kwargs.get("image_embeds")
|
843 |
+
text_embs = added_cond_kwargs.get("text_embeds", encoder_hidden_states)
|
844 |
+
aug_emb = self.add_embedding(text_embs, image_embs)
|
845 |
+
elif self.config.addition_embed_type == "text_time":
|
846 |
+
# SDXL - style
|
847 |
+
if "text_embeds" not in added_cond_kwargs:
|
848 |
+
raise ValueError(
|
849 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`"
|
850 |
+
)
|
851 |
+
text_embeds = added_cond_kwargs.get("text_embeds")
|
852 |
+
if "time_ids" not in added_cond_kwargs:
|
853 |
+
raise ValueError(
|
854 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`"
|
855 |
+
)
|
856 |
+
time_ids = added_cond_kwargs.get("time_ids")
|
857 |
+
time_embeds = self.add_time_proj(time_ids.flatten())
|
858 |
+
time_embeds = time_embeds.reshape((text_embeds.shape[0], -1))
|
859 |
+
|
860 |
+
add_embeds = torch.concat([text_embeds, time_embeds], dim=-1)
|
861 |
+
add_embeds = add_embeds.to(emb.dtype)
|
862 |
+
aug_emb = self.add_embedding(add_embeds)
|
863 |
+
elif self.config.addition_embed_type == "image":
|
864 |
+
# Kandinsky 2.2 - style
|
865 |
+
if "image_embeds" not in added_cond_kwargs:
|
866 |
+
raise ValueError(
|
867 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
|
868 |
+
)
|
869 |
+
image_embs = added_cond_kwargs.get("image_embeds")
|
870 |
+
aug_emb = self.add_embedding(image_embs)
|
871 |
+
elif self.config.addition_embed_type == "image_hint":
|
872 |
+
# Kandinsky 2.2 - style
|
873 |
+
if "image_embeds" not in added_cond_kwargs or "hint" not in added_cond_kwargs:
|
874 |
+
raise ValueError(
|
875 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'image_hint' which requires the keyword arguments `image_embeds` and `hint` to be passed in `added_cond_kwargs`"
|
876 |
+
)
|
877 |
+
image_embs = added_cond_kwargs.get("image_embeds")
|
878 |
+
hint = added_cond_kwargs.get("hint")
|
879 |
+
aug_emb, hint = self.add_embedding(image_embs, hint)
|
880 |
+
sample = torch.cat([sample, hint], dim=1)
|
881 |
+
|
882 |
+
emb = emb + aug_emb if aug_emb is not None else emb
|
883 |
+
|
884 |
+
if self.time_embed_act is not None:
|
885 |
+
emb = self.time_embed_act(emb)
|
886 |
+
|
887 |
+
if self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_proj":
|
888 |
+
encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states)
|
889 |
+
elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_image_proj":
|
890 |
+
# Kadinsky 2.1 - style
|
891 |
+
if "image_embeds" not in added_cond_kwargs:
|
892 |
+
raise ValueError(
|
893 |
+
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'text_image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
|
894 |
+
)
|
895 |
+
|
896 |
+
image_embeds = added_cond_kwargs.get("image_embeds")
|
897 |
+
encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states, image_embeds)
|
898 |
+
elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "image_proj":
|
899 |
+
# Kandinsky 2.2 - style
|
900 |
+
if "image_embeds" not in added_cond_kwargs:
|
901 |
+
raise ValueError(
|
902 |
+
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
|
903 |
+
)
|
904 |
+
image_embeds = added_cond_kwargs.get("image_embeds")
|
905 |
+
encoder_hidden_states = self.encoder_hid_proj(image_embeds)
|
906 |
+
# 2. pre-process
|
907 |
+
sample = self.conv_in(sample)
|
908 |
+
|
909 |
+
# 2.5 GLIGEN position net
|
910 |
+
if cross_attention_kwargs is not None and cross_attention_kwargs.get("gligen", None) is not None:
|
911 |
+
cross_attention_kwargs = cross_attention_kwargs.copy()
|
912 |
+
gligen_args = cross_attention_kwargs.pop("gligen")
|
913 |
+
cross_attention_kwargs["gligen"] = {"objs": self.position_net(**gligen_args)}
|
914 |
+
|
915 |
+
# 3. down
|
916 |
+
lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0
|
917 |
+
|
918 |
+
is_controlnet = mid_block_additional_residual is not None and down_block_additional_residuals is not None
|
919 |
+
is_adapter = mid_block_additional_residual is None and down_block_additional_residuals is not None
|
920 |
+
|
921 |
+
down_block_res_samples = (sample,)
|
922 |
+
for downsample_block in self.down_blocks:
|
923 |
+
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
|
924 |
+
# For t2i-adapter CrossAttnDownBlock2D
|
925 |
+
additional_residuals = {}
|
926 |
+
if is_adapter and len(down_block_additional_residuals) > 0:
|
927 |
+
additional_residuals["additional_residuals"] = down_block_additional_residuals.pop(0)
|
928 |
+
|
929 |
+
sample, res_samples = downsample_block(
|
930 |
+
hidden_states=sample,
|
931 |
+
temb=emb,
|
932 |
+
encoder_hidden_states=encoder_hidden_states,
|
933 |
+
attention_mask=attention_mask,
|
934 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
935 |
+
encoder_attention_mask=encoder_attention_mask,
|
936 |
+
first_frame_latents=first_frame_latents,
|
937 |
+
**additional_residuals,
|
938 |
+
)
|
939 |
+
else:
|
940 |
+
sample, res_samples = downsample_block(hidden_states=sample, temb=emb, scale=lora_scale, first_frame_latents=first_frame_latents,)
|
941 |
+
|
942 |
+
if is_adapter and len(down_block_additional_residuals) > 0:
|
943 |
+
sample += down_block_additional_residuals.pop(0)
|
944 |
+
|
945 |
+
down_block_res_samples += res_samples
|
946 |
+
|
947 |
+
if is_controlnet:
|
948 |
+
new_down_block_res_samples = ()
|
949 |
+
|
950 |
+
for down_block_res_sample, down_block_additional_residual in zip(
|
951 |
+
down_block_res_samples, down_block_additional_residuals
|
952 |
+
):
|
953 |
+
down_block_res_sample = down_block_res_sample + down_block_additional_residual
|
954 |
+
new_down_block_res_samples = new_down_block_res_samples + (down_block_res_sample,)
|
955 |
+
|
956 |
+
down_block_res_samples = new_down_block_res_samples
|
957 |
+
|
958 |
+
# 4. mid
|
959 |
+
if self.mid_block is not None:
|
960 |
+
sample = self.mid_block(
|
961 |
+
sample,
|
962 |
+
emb,
|
963 |
+
encoder_hidden_states=encoder_hidden_states,
|
964 |
+
attention_mask=attention_mask,
|
965 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
966 |
+
encoder_attention_mask=encoder_attention_mask,
|
967 |
+
# additional
|
968 |
+
first_frame_latents=first_frame_latents,
|
969 |
+
)
|
970 |
+
# To support T2I-Adapter-XL
|
971 |
+
if (
|
972 |
+
is_adapter
|
973 |
+
and len(down_block_additional_residuals) > 0
|
974 |
+
and sample.shape == down_block_additional_residuals[0].shape
|
975 |
+
):
|
976 |
+
sample += down_block_additional_residuals.pop(0)
|
977 |
+
|
978 |
+
if is_controlnet:
|
979 |
+
sample = sample + mid_block_additional_residual
|
980 |
+
|
981 |
+
# 5. up
|
982 |
+
for i, upsample_block in enumerate(self.up_blocks):
|
983 |
+
is_final_block = i == len(self.up_blocks) - 1
|
984 |
+
|
985 |
+
res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
|
986 |
+
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
|
987 |
+
|
988 |
+
# if we have not reached the final block and need to forward the
|
989 |
+
# upsample size, we do it here
|
990 |
+
if not is_final_block and forward_upsample_size:
|
991 |
+
upsample_size = down_block_res_samples[-1].shape[2:]
|
992 |
+
|
993 |
+
if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
|
994 |
+
sample = upsample_block(
|
995 |
+
hidden_states=sample,
|
996 |
+
temb=emb,
|
997 |
+
res_hidden_states_tuple=res_samples,
|
998 |
+
encoder_hidden_states=encoder_hidden_states,
|
999 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
1000 |
+
upsample_size=upsample_size,
|
1001 |
+
attention_mask=attention_mask,
|
1002 |
+
encoder_attention_mask=encoder_attention_mask,
|
1003 |
+
first_frame_latents=first_frame_latents,
|
1004 |
+
)
|
1005 |
+
else:
|
1006 |
+
sample = upsample_block(
|
1007 |
+
hidden_states=sample,
|
1008 |
+
temb=emb,
|
1009 |
+
res_hidden_states_tuple=res_samples,
|
1010 |
+
upsample_size=upsample_size,
|
1011 |
+
scale=lora_scale,
|
1012 |
+
first_frame_latents=first_frame_latents,
|
1013 |
+
)
|
1014 |
+
|
1015 |
+
# 6. post-process
|
1016 |
+
if self.conv_norm_out:
|
1017 |
+
sample = self.conv_norm_out(sample)
|
1018 |
+
sample = self.conv_act(sample)
|
1019 |
+
sample = self.conv_out(sample)
|
1020 |
+
|
1021 |
+
sample = rearrange(sample, "(b f) c h w -> b c f h w", f=video_length)
|
1022 |
+
if self.config.first_frame_condition_mode != "none":
|
1023 |
+
sample = sample[:, :, 1:, :, :]
|
1024 |
+
|
1025 |
+
if not return_dict:
|
1026 |
+
return (sample,)
|
1027 |
+
|
1028 |
+
return UNet2DConditionOutput(sample=sample)
|
1029 |
+
|
1030 |
+
@classmethod
|
1031 |
+
def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], **kwargs):
|
1032 |
+
|
1033 |
+
kwargs.pop("low_cpu_mem_usage", False)
|
1034 |
+
kwargs.pop("device_map", None)
|
1035 |
+
|
1036 |
+
cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
|
1037 |
+
ignore_mismatched_sizes = kwargs.pop("ignore_mismatched_sizes", False)
|
1038 |
+
force_download = kwargs.pop("force_download", False)
|
1039 |
+
from_flax = kwargs.pop("from_flax", False)
|
1040 |
+
resume_download = kwargs.pop("resume_download", False)
|
1041 |
+
proxies = kwargs.pop("proxies", None)
|
1042 |
+
output_loading_info = kwargs.pop("output_loading_info", False)
|
1043 |
+
local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE)
|
1044 |
+
use_auth_token = kwargs.pop("use_auth_token", None)
|
1045 |
+
revision = kwargs.pop("revision", None)
|
1046 |
+
torch_dtype = kwargs.pop("torch_dtype", None)
|
1047 |
+
subfolder = kwargs.pop("subfolder", None)
|
1048 |
+
device_map = None
|
1049 |
+
max_memory = kwargs.pop("max_memory", None)
|
1050 |
+
offload_folder = kwargs.pop("offload_folder", None)
|
1051 |
+
offload_state_dict = kwargs.pop("offload_state_dict", False)
|
1052 |
+
low_cpu_mem_usage = False
|
1053 |
+
variant = kwargs.pop("variant", None)
|
1054 |
+
use_safetensors = kwargs.pop("use_safetensors", None)
|
1055 |
+
|
1056 |
+
allow_pickle = False
|
1057 |
+
if use_safetensors is None:
|
1058 |
+
use_safetensors = True
|
1059 |
+
allow_pickle = True
|
1060 |
+
|
1061 |
+
if low_cpu_mem_usage and not is_accelerate_available():
|
1062 |
+
low_cpu_mem_usage = False
|
1063 |
+
logger.warning(
|
1064 |
+
"Cannot initialize model with low cpu memory usage because `accelerate` was not found in the"
|
1065 |
+
" environment. Defaulting to `low_cpu_mem_usage=False`. It is strongly recommended to install"
|
1066 |
+
" `accelerate` for faster and less memory-intense model loading. You can do so with: \n```\npip"
|
1067 |
+
" install accelerate\n```\n."
|
1068 |
+
)
|
1069 |
+
|
1070 |
+
if device_map is not None and not is_accelerate_available():
|
1071 |
+
raise NotImplementedError(
|
1072 |
+
"Loading and dispatching requires `accelerate`. Please make sure to install accelerate or set"
|
1073 |
+
" `device_map=None`. You can install accelerate with `pip install accelerate`."
|
1074 |
+
)
|
1075 |
+
|
1076 |
+
# Check if we can handle device_map and dispatching the weights
|
1077 |
+
if device_map is not None and not is_torch_version(">=", "1.9.0"):
|
1078 |
+
raise NotImplementedError(
|
1079 |
+
"Loading and dispatching requires torch >= 1.9.0. Please either update your PyTorch version or set"
|
1080 |
+
" `device_map=None`."
|
1081 |
+
)
|
1082 |
+
|
1083 |
+
if low_cpu_mem_usage is True and not is_torch_version(">=", "1.9.0"):
|
1084 |
+
raise NotImplementedError(
|
1085 |
+
"Low memory initialization requires torch >= 1.9.0. Please either update your PyTorch version or set"
|
1086 |
+
" `low_cpu_mem_usage=False`."
|
1087 |
+
)
|
1088 |
+
|
1089 |
+
if low_cpu_mem_usage is False and device_map is not None:
|
1090 |
+
raise ValueError(
|
1091 |
+
f"You cannot set `low_cpu_mem_usage` to `False` while using device_map={device_map} for loading and"
|
1092 |
+
" dispatching. Please make sure to set `low_cpu_mem_usage=True`."
|
1093 |
+
)
|
1094 |
+
|
1095 |
+
# Load config if we don't provide a configuration
|
1096 |
+
config_path = pretrained_model_name_or_path
|
1097 |
+
|
1098 |
+
user_agent = {
|
1099 |
+
"diffusers": __version__,
|
1100 |
+
"file_type": "model",
|
1101 |
+
"framework": "pytorch",
|
1102 |
+
}
|
1103 |
+
|
1104 |
+
# load config
|
1105 |
+
config, unused_kwargs, commit_hash = cls.load_config(
|
1106 |
+
config_path,
|
1107 |
+
cache_dir=cache_dir,
|
1108 |
+
return_unused_kwargs=True,
|
1109 |
+
return_commit_hash=True,
|
1110 |
+
force_download=force_download,
|
1111 |
+
resume_download=resume_download,
|
1112 |
+
proxies=proxies,
|
1113 |
+
local_files_only=local_files_only,
|
1114 |
+
use_auth_token=use_auth_token,
|
1115 |
+
revision=revision,
|
1116 |
+
subfolder=subfolder,
|
1117 |
+
device_map=device_map,
|
1118 |
+
max_memory=max_memory,
|
1119 |
+
offload_folder=offload_folder,
|
1120 |
+
offload_state_dict=offload_state_dict,
|
1121 |
+
user_agent=user_agent,
|
1122 |
+
**kwargs,
|
1123 |
+
)
|
1124 |
+
|
1125 |
+
# load model
|
1126 |
+
model_file = None
|
1127 |
+
if from_flax:
|
1128 |
+
model_file = _get_model_file(
|
1129 |
+
pretrained_model_name_or_path,
|
1130 |
+
weights_name=FLAX_WEIGHTS_NAME,
|
1131 |
+
cache_dir=cache_dir,
|
1132 |
+
force_download=force_download,
|
1133 |
+
resume_download=resume_download,
|
1134 |
+
proxies=proxies,
|
1135 |
+
local_files_only=local_files_only,
|
1136 |
+
use_auth_token=use_auth_token,
|
1137 |
+
revision=revision,
|
1138 |
+
subfolder=subfolder,
|
1139 |
+
user_agent=user_agent,
|
1140 |
+
commit_hash=commit_hash,
|
1141 |
+
)
|
1142 |
+
model = cls.from_config(config, **unused_kwargs)
|
1143 |
+
|
1144 |
+
# Convert the weights
|
1145 |
+
from diffusers.models.modeling_pytorch_flax_utils import load_flax_checkpoint_in_pytorch_model
|
1146 |
+
|
1147 |
+
model = load_flax_checkpoint_in_pytorch_model(model, model_file)
|
1148 |
+
else:
|
1149 |
+
if use_safetensors:
|
1150 |
+
try:
|
1151 |
+
model_file = _get_model_file(
|
1152 |
+
pretrained_model_name_or_path,
|
1153 |
+
weights_name=_add_variant(SAFETENSORS_WEIGHTS_NAME, variant),
|
1154 |
+
cache_dir=cache_dir,
|
1155 |
+
force_download=force_download,
|
1156 |
+
resume_download=resume_download,
|
1157 |
+
proxies=proxies,
|
1158 |
+
local_files_only=local_files_only,
|
1159 |
+
use_auth_token=use_auth_token,
|
1160 |
+
revision=revision,
|
1161 |
+
subfolder=subfolder,
|
1162 |
+
user_agent=user_agent,
|
1163 |
+
commit_hash=commit_hash,
|
1164 |
+
)
|
1165 |
+
except IOError as e:
|
1166 |
+
if not allow_pickle:
|
1167 |
+
raise e
|
1168 |
+
pass
|
1169 |
+
if model_file is None:
|
1170 |
+
model_file = _get_model_file(
|
1171 |
+
pretrained_model_name_or_path,
|
1172 |
+
weights_name=_add_variant(WEIGHTS_NAME, variant),
|
1173 |
+
cache_dir=cache_dir,
|
1174 |
+
force_download=force_download,
|
1175 |
+
resume_download=resume_download,
|
1176 |
+
proxies=proxies,
|
1177 |
+
local_files_only=local_files_only,
|
1178 |
+
use_auth_token=use_auth_token,
|
1179 |
+
revision=revision,
|
1180 |
+
subfolder=subfolder,
|
1181 |
+
user_agent=user_agent,
|
1182 |
+
commit_hash=commit_hash,
|
1183 |
+
)
|
1184 |
+
|
1185 |
+
if low_cpu_mem_usage:
|
1186 |
+
# Instantiate model with empty weights
|
1187 |
+
with accelerate.init_empty_weights():
|
1188 |
+
model = cls.from_config(config, **unused_kwargs)
|
1189 |
+
|
1190 |
+
# if device_map is None, load the state dict and move the params from meta device to the cpu
|
1191 |
+
if device_map is None:
|
1192 |
+
param_device = "cpu"
|
1193 |
+
state_dict = load_state_dict(model_file, variant=variant)
|
1194 |
+
model._convert_deprecated_attention_blocks(state_dict)
|
1195 |
+
# move the params from meta device to cpu
|
1196 |
+
missing_keys = set(model.state_dict().keys()) - set(state_dict.keys())
|
1197 |
+
if len(missing_keys) > 0:
|
1198 |
+
raise ValueError(
|
1199 |
+
f"Cannot load {cls} from {pretrained_model_name_or_path} because the following keys are"
|
1200 |
+
f" missing: \n {', '.join(missing_keys)}. \n Please make sure to pass"
|
1201 |
+
" `low_cpu_mem_usage=False` and `device_map=None` if you want to randomly initialize"
|
1202 |
+
" those weights or else make sure your checkpoint file is correct."
|
1203 |
+
)
|
1204 |
+
|
1205 |
+
unexpected_keys = load_model_dict_into_meta(
|
1206 |
+
model,
|
1207 |
+
state_dict,
|
1208 |
+
device=param_device,
|
1209 |
+
dtype=torch_dtype,
|
1210 |
+
model_name_or_path=pretrained_model_name_or_path,
|
1211 |
+
)
|
1212 |
+
|
1213 |
+
if cls._keys_to_ignore_on_load_unexpected is not None:
|
1214 |
+
for pat in cls._keys_to_ignore_on_load_unexpected:
|
1215 |
+
unexpected_keys = [k for k in unexpected_keys if re.search(pat, k) is None]
|
1216 |
+
|
1217 |
+
if len(unexpected_keys) > 0:
|
1218 |
+
logger.warn(
|
1219 |
+
f"Some weights of the model checkpoint were not used when initializing {cls.__name__}: \n {[', '.join(unexpected_keys)]}"
|
1220 |
+
)
|
1221 |
+
|
1222 |
+
else: # else let accelerate handle loading and dispatching.
|
1223 |
+
# Load weights and dispatch according to the device_map
|
1224 |
+
# by default the device_map is None and the weights are loaded on the CPU
|
1225 |
+
try:
|
1226 |
+
accelerate.load_checkpoint_and_dispatch(
|
1227 |
+
model,
|
1228 |
+
model_file,
|
1229 |
+
device_map,
|
1230 |
+
max_memory=max_memory,
|
1231 |
+
offload_folder=offload_folder,
|
1232 |
+
offload_state_dict=offload_state_dict,
|
1233 |
+
dtype=torch_dtype,
|
1234 |
+
)
|
1235 |
+
except AttributeError as e:
|
1236 |
+
# When using accelerate loading, we do not have the ability to load the state
|
1237 |
+
# dict and rename the weight names manually. Additionally, accelerate skips
|
1238 |
+
# torch loading conventions and directly writes into `module.{_buffers, _parameters}`
|
1239 |
+
# (which look like they should be private variables?), so we can't use the standard hooks
|
1240 |
+
# to rename parameters on load. We need to mimic the original weight names so the correct
|
1241 |
+
# attributes are available. After we have loaded the weights, we convert the deprecated
|
1242 |
+
# names to the new non-deprecated names. Then we _greatly encourage_ the user to convert
|
1243 |
+
# the weights so we don't have to do this again.
|
1244 |
+
|
1245 |
+
if "'Attention' object has no attribute" in str(e):
|
1246 |
+
logger.warn(
|
1247 |
+
f"Taking `{str(e)}` while using `accelerate.load_checkpoint_and_dispatch` to mean {pretrained_model_name_or_path}"
|
1248 |
+
" was saved with deprecated attention block weight names. We will load it with the deprecated attention block"
|
1249 |
+
" names and convert them on the fly to the new attention block format. Please re-save the model after this conversion,"
|
1250 |
+
" so we don't have to do the on the fly renaming in the future. If the model is from a hub checkpoint,"
|
1251 |
+
" please also re-upload it or open a PR on the original repository."
|
1252 |
+
)
|
1253 |
+
model._temp_convert_self_to_deprecated_attention_blocks()
|
1254 |
+
accelerate.load_checkpoint_and_dispatch(
|
1255 |
+
model,
|
1256 |
+
model_file,
|
1257 |
+
device_map,
|
1258 |
+
max_memory=max_memory,
|
1259 |
+
offload_folder=offload_folder,
|
1260 |
+
offload_state_dict=offload_state_dict,
|
1261 |
+
dtype=torch_dtype,
|
1262 |
+
)
|
1263 |
+
model._undo_temp_convert_self_to_deprecated_attention_blocks()
|
1264 |
+
else:
|
1265 |
+
raise e
|
1266 |
+
|
1267 |
+
loading_info = {
|
1268 |
+
"missing_keys": [],
|
1269 |
+
"unexpected_keys": [],
|
1270 |
+
"mismatched_keys": [],
|
1271 |
+
"error_msgs": [],
|
1272 |
+
}
|
1273 |
+
else:
|
1274 |
+
model = cls.from_config(config, **unused_kwargs)
|
1275 |
+
|
1276 |
+
state_dict = load_state_dict(model_file, variant=variant)
|
1277 |
+
model._convert_deprecated_attention_blocks(state_dict)
|
1278 |
+
|
1279 |
+
model, missing_keys, unexpected_keys, mismatched_keys, error_msgs = cls._load_pretrained_model(
|
1280 |
+
model,
|
1281 |
+
state_dict,
|
1282 |
+
model_file,
|
1283 |
+
pretrained_model_name_or_path,
|
1284 |
+
ignore_mismatched_sizes=ignore_mismatched_sizes,
|
1285 |
+
)
|
1286 |
+
|
1287 |
+
loading_info = {
|
1288 |
+
"missing_keys": missing_keys,
|
1289 |
+
"unexpected_keys": unexpected_keys,
|
1290 |
+
"mismatched_keys": mismatched_keys,
|
1291 |
+
"error_msgs": error_msgs,
|
1292 |
+
}
|
1293 |
+
|
1294 |
+
if torch_dtype is not None and not isinstance(torch_dtype, torch.dtype):
|
1295 |
+
raise ValueError(
|
1296 |
+
f"{torch_dtype} needs to be of type `torch.dtype`, e.g. `torch.float16`, but is {type(torch_dtype)}."
|
1297 |
+
)
|
1298 |
+
elif torch_dtype is not None:
|
1299 |
+
model = model.to(torch_dtype)
|
1300 |
+
|
1301 |
+
model.register_to_config(_name_or_path=pretrained_model_name_or_path)
|
1302 |
+
|
1303 |
+
m, u = loading_info["missing_keys"], loading_info["unexpected_keys"]
|
1304 |
+
logger.info(f"### missing keys: {len(m)}; unexpected keys: {len(u)};")
|
1305 |
+
# print(f"### missing keys:\n{m}\n### unexpected keys:\n{u}\n")
|
1306 |
+
|
1307 |
+
spatial_params = [p.numel() if "conv3ds" not in n and "tempo_attns" not in n else 0 for n, p in model.named_parameters()]
|
1308 |
+
tconv_params = [p.numel() if "conv3ds." in n else 0 for n, p in model.named_parameters()]
|
1309 |
+
tattn_params = [p.numel() if "tempo_attns." in n else 0 for n, p in model.named_parameters()]
|
1310 |
+
tffconv_params = [p.numel() if "first_frame_conv." in n else 0 for n, p in model.named_parameters()]
|
1311 |
+
logger.info(f"### First Frame Convolution Layer Parameters: {sum(tffconv_params) / 1e6} M")
|
1312 |
+
logger.info(f"### Spatial UNet Parameters: {sum(spatial_params) / 1e6} M")
|
1313 |
+
logger.info(f"### Temporal Convolution Module Parameters: {sum(tconv_params) / 1e6} M")
|
1314 |
+
logger.info(f"### Temporal Attention Module Parameters: {sum(tattn_params) / 1e6} M")
|
1315 |
+
|
1316 |
+
# Set model in evaluation mode to deactivate DropOut modules by default
|
1317 |
+
model.eval()
|
1318 |
+
if output_loading_info:
|
1319 |
+
return model, loading_info
|
1320 |
+
|
1321 |
+
return model
|
1322 |
+
|
1323 |
+
if __name__ == "__main__":
|
1324 |
+
# test
|
1325 |
+
from diffusers import AutoencoderKL, DDIMScheduler
|
1326 |
+
from transformers import CLIPTextModel, CLIPTokenizer
|
1327 |
+
from consisti2v.pipelines.pipeline_animation import AnimationPipeline
|
1328 |
+
from consisti2v.pipelines.pipeline_conditional_animation import ConditionalAnimationPipeline
|
1329 |
+
from consisti2v.utils.util import save_videos_grid
|
1330 |
+
|
1331 |
+
pretrained_model_path = "models/StableDiffusion/stable-diffusion-v1-5"
|
1332 |
+
prompt = "apply eye makeup"
|
1333 |
+
first_frame_path = "/ML-A100/home/weiming/datasets/UCF/frames/v_ApplyEyeMakeup_g01_c01_frame_90.jpg"
|
1334 |
+
|
1335 |
+
tokenizer = CLIPTokenizer.from_pretrained(pretrained_model_path, subfolder="tokenizer", use_safetensors=True)
|
1336 |
+
text_encoder = CLIPTextModel.from_pretrained(pretrained_model_path, subfolder="text_encoder")
|
1337 |
+
vae = AutoencoderKL.from_pretrained(pretrained_model_path, subfolder="vae", use_safetensors=True)
|
1338 |
+
unet = VideoLDMUNet3DConditionModel.from_pretrained(
|
1339 |
+
pretrained_model_path,
|
1340 |
+
subfolder="unet",
|
1341 |
+
use_safetensors=True
|
1342 |
+
)
|
1343 |
+
|
1344 |
+
noise_scheduler_kwargs = {
|
1345 |
+
"num_train_timesteps": 1000,
|
1346 |
+
"beta_start": 0.00085,
|
1347 |
+
"beta_end": 0.012,
|
1348 |
+
"beta_schedule": "linear",
|
1349 |
+
"steps_offset": 1,
|
1350 |
+
"clip_sample": False,
|
1351 |
+
}
|
1352 |
+
noise_scheduler = DDIMScheduler(**noise_scheduler_kwargs)
|
1353 |
+
# latent = torch.randn(1, 4, 8, 64, 64).to("cuda")
|
1354 |
+
# text_embedding = torch.randn(1, 77, 768).to("cuda")
|
1355 |
+
# timestep = torch.randint(0, 1000, (1,)).to("cuda").squeeze(0)
|
1356 |
+
# output = unet(latent, timestep, text_embedding)
|
1357 |
+
|
1358 |
+
pipeline = ConditionalAnimationPipeline(
|
1359 |
+
unet=unet, vae=vae, tokenizer=tokenizer, text_encoder=text_encoder, scheduler=noise_scheduler,
|
1360 |
+
).to("cuda")
|
1361 |
+
sample = pipeline(
|
1362 |
+
prompt,
|
1363 |
+
num_inference_steps = 25,
|
1364 |
+
guidance_scale = 8.,
|
1365 |
+
video_length = 8,
|
1366 |
+
height = 256,
|
1367 |
+
width = 256,
|
1368 |
+
first_frame_paths = first_frame_path,
|
1369 |
+
).videos
|
1370 |
+
print(sample.shape)
|
1371 |
+
save_videos_grid(sample, f"samples/videoldm.gif")
|
consisti2v/models/videoldm_unet_blocks.py
ADDED
@@ -0,0 +1,1159 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Optional, Dict, Tuple, Any
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
import torch.nn.functional as F
|
6 |
+
from einops import rearrange, repeat
|
7 |
+
from einops.layers.torch import Rearrange
|
8 |
+
from diffusers.utils import logging
|
9 |
+
from diffusers.models.unet_2d_blocks import (
|
10 |
+
DownBlock2D,
|
11 |
+
UpBlock2D
|
12 |
+
)
|
13 |
+
from diffusers.models.resnet import (
|
14 |
+
ResnetBlock2D,
|
15 |
+
Downsample2D,
|
16 |
+
Upsample2D,
|
17 |
+
)
|
18 |
+
from diffusers.models.transformer_2d import Transformer2DModelOutput
|
19 |
+
from diffusers.models.dual_transformer_2d import DualTransformer2DModel
|
20 |
+
from diffusers.models.activations import get_activation
|
21 |
+
from diffusers.utils import logging, is_torch_version
|
22 |
+
from diffusers.utils.import_utils import is_xformers_available
|
23 |
+
from .videoldm_transformer_blocks import Transformer2DConditionModel
|
24 |
+
|
25 |
+
logger = logging.get_logger(__name__)
|
26 |
+
|
27 |
+
if is_xformers_available():
|
28 |
+
import xformers
|
29 |
+
import xformers.ops
|
30 |
+
else:
|
31 |
+
xformers = None
|
32 |
+
|
33 |
+
|
34 |
+
def get_down_block(
|
35 |
+
down_block_type,
|
36 |
+
num_layers,
|
37 |
+
in_channels,
|
38 |
+
out_channels,
|
39 |
+
temb_channels,
|
40 |
+
add_downsample,
|
41 |
+
resnet_eps,
|
42 |
+
resnet_act_fn,
|
43 |
+
transformer_layers_per_block=1,
|
44 |
+
num_attention_heads=None,
|
45 |
+
resnet_groups=None,
|
46 |
+
cross_attention_dim=None,
|
47 |
+
downsample_padding=None,
|
48 |
+
dual_cross_attention=False,
|
49 |
+
use_linear_projection=False,
|
50 |
+
only_cross_attention=False,
|
51 |
+
upcast_attention=False,
|
52 |
+
resnet_time_scale_shift="default",
|
53 |
+
attention_type="default",
|
54 |
+
resnet_skip_time_act=False,
|
55 |
+
resnet_out_scale_factor=1.0,
|
56 |
+
cross_attention_norm=None,
|
57 |
+
attention_head_dim=None,
|
58 |
+
downsample_type=None,
|
59 |
+
dropout=0.0,
|
60 |
+
# additional
|
61 |
+
use_temporal=True,
|
62 |
+
augment_temporal_attention=False,
|
63 |
+
n_frames=8,
|
64 |
+
n_temp_heads=8,
|
65 |
+
first_frame_condition_mode="none",
|
66 |
+
latent_channels=4,
|
67 |
+
rotary_emb=False,
|
68 |
+
):
|
69 |
+
# If attn head dim is not defined, we default it to the number of heads
|
70 |
+
if attention_head_dim is None:
|
71 |
+
logger.warn(
|
72 |
+
f"It is recommended to provide `attention_head_dim` when calling `get_down_block`. Defaulting `attention_head_dim` to {num_attention_heads}."
|
73 |
+
)
|
74 |
+
attention_head_dim = num_attention_heads
|
75 |
+
|
76 |
+
down_block_type = down_block_type[7:] if down_block_type.startswith("UNetRes") else down_block_type
|
77 |
+
if down_block_type == "DownBlock2D":
|
78 |
+
return VideoLDMDownBlock(
|
79 |
+
num_layers=num_layers,
|
80 |
+
in_channels=in_channels,
|
81 |
+
out_channels=out_channels,
|
82 |
+
temb_channels=temb_channels,
|
83 |
+
dropout=dropout,
|
84 |
+
add_downsample=add_downsample,
|
85 |
+
resnet_eps=resnet_eps,
|
86 |
+
resnet_act_fn=resnet_act_fn,
|
87 |
+
resnet_groups=resnet_groups,
|
88 |
+
downsample_padding=downsample_padding,
|
89 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
90 |
+
# additional
|
91 |
+
use_temporal=use_temporal,
|
92 |
+
n_frames=n_frames,
|
93 |
+
first_frame_condition_mode=first_frame_condition_mode,
|
94 |
+
latent_channels=latent_channels
|
95 |
+
)
|
96 |
+
elif down_block_type == "CrossAttnDownBlock2D":
|
97 |
+
return VideoLDMCrossAttnDownBlock(
|
98 |
+
num_layers=num_layers,
|
99 |
+
transformer_layers_per_block=transformer_layers_per_block,
|
100 |
+
in_channels=in_channels,
|
101 |
+
out_channels=out_channels,
|
102 |
+
temb_channels=temb_channels,
|
103 |
+
dropout=dropout,
|
104 |
+
add_downsample=add_downsample,
|
105 |
+
resnet_eps=resnet_eps,
|
106 |
+
resnet_act_fn=resnet_act_fn,
|
107 |
+
resnet_groups=resnet_groups,
|
108 |
+
downsample_padding=downsample_padding,
|
109 |
+
cross_attention_dim=cross_attention_dim,
|
110 |
+
num_attention_heads=num_attention_heads,
|
111 |
+
dual_cross_attention=dual_cross_attention,
|
112 |
+
use_linear_projection=use_linear_projection,
|
113 |
+
only_cross_attention=only_cross_attention,
|
114 |
+
upcast_attention=upcast_attention,
|
115 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
116 |
+
attention_type=attention_type,
|
117 |
+
# additional
|
118 |
+
use_temporal=use_temporal,
|
119 |
+
augment_temporal_attention=augment_temporal_attention,
|
120 |
+
n_frames=n_frames,
|
121 |
+
n_temp_heads=n_temp_heads,
|
122 |
+
first_frame_condition_mode=first_frame_condition_mode,
|
123 |
+
latent_channels=latent_channels,
|
124 |
+
rotary_emb=rotary_emb,
|
125 |
+
)
|
126 |
+
|
127 |
+
raise ValueError(f'{down_block_type} does not exist.')
|
128 |
+
|
129 |
+
|
130 |
+
def get_up_block(
|
131 |
+
up_block_type,
|
132 |
+
num_layers,
|
133 |
+
in_channels,
|
134 |
+
out_channels,
|
135 |
+
prev_output_channel,
|
136 |
+
temb_channels,
|
137 |
+
add_upsample,
|
138 |
+
resnet_eps,
|
139 |
+
resnet_act_fn,
|
140 |
+
transformer_layers_per_block=1,
|
141 |
+
num_attention_heads=None,
|
142 |
+
resnet_groups=None,
|
143 |
+
cross_attention_dim=None,
|
144 |
+
dual_cross_attention=False,
|
145 |
+
use_linear_projection=False,
|
146 |
+
only_cross_attention=False,
|
147 |
+
upcast_attention=False,
|
148 |
+
resnet_time_scale_shift="default",
|
149 |
+
attention_type="default",
|
150 |
+
resnet_skip_time_act=False,
|
151 |
+
resnet_out_scale_factor=1.0,
|
152 |
+
cross_attention_norm=None,
|
153 |
+
attention_head_dim=None,
|
154 |
+
upsample_type=None,
|
155 |
+
dropout=0.0,
|
156 |
+
# additional
|
157 |
+
use_temporal=True,
|
158 |
+
augment_temporal_attention=False,
|
159 |
+
n_frames=8,
|
160 |
+
n_temp_heads=8,
|
161 |
+
first_frame_condition_mode="none",
|
162 |
+
latent_channels=4,
|
163 |
+
rotary_emb=None,
|
164 |
+
):
|
165 |
+
if attention_head_dim is None:
|
166 |
+
logger.warn(
|
167 |
+
f"It is recommended to provide `attention_head_dim` when calling `get_up_block`. Defaulting `attention_head_dim` to {num_attention_heads}."
|
168 |
+
)
|
169 |
+
attention_head_dim = num_attention_heads
|
170 |
+
|
171 |
+
up_block_type = up_block_type[7:] if up_block_type.startswith("UNetRes") else up_block_type
|
172 |
+
if up_block_type == "UpBlock2D":
|
173 |
+
return VideoLDMUpBlock(
|
174 |
+
num_layers=num_layers,
|
175 |
+
in_channels=in_channels,
|
176 |
+
out_channels=out_channels,
|
177 |
+
prev_output_channel=prev_output_channel,
|
178 |
+
temb_channels=temb_channels,
|
179 |
+
dropout=dropout,
|
180 |
+
add_upsample=add_upsample,
|
181 |
+
resnet_eps=resnet_eps,
|
182 |
+
resnet_act_fn=resnet_act_fn,
|
183 |
+
resnet_groups=resnet_groups,
|
184 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
185 |
+
# additional
|
186 |
+
use_temporal=use_temporal,
|
187 |
+
n_frames=n_frames,
|
188 |
+
first_frame_condition_mode=first_frame_condition_mode,
|
189 |
+
latent_channels=latent_channels
|
190 |
+
)
|
191 |
+
elif up_block_type == 'CrossAttnUpBlock2D':
|
192 |
+
return VideoLDMCrossAttnUpBlock(
|
193 |
+
num_layers=num_layers,
|
194 |
+
transformer_layers_per_block=transformer_layers_per_block,
|
195 |
+
in_channels=in_channels,
|
196 |
+
out_channels=out_channels,
|
197 |
+
prev_output_channel=prev_output_channel,
|
198 |
+
temb_channels=temb_channels,
|
199 |
+
dropout=dropout,
|
200 |
+
add_upsample=add_upsample,
|
201 |
+
resnet_eps=resnet_eps,
|
202 |
+
resnet_act_fn=resnet_act_fn,
|
203 |
+
resnet_groups=resnet_groups,
|
204 |
+
cross_attention_dim=cross_attention_dim,
|
205 |
+
num_attention_heads=num_attention_heads,
|
206 |
+
dual_cross_attention=dual_cross_attention,
|
207 |
+
use_linear_projection=use_linear_projection,
|
208 |
+
only_cross_attention=only_cross_attention,
|
209 |
+
upcast_attention=upcast_attention,
|
210 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
211 |
+
attention_type=attention_type,
|
212 |
+
# additional
|
213 |
+
use_temporal=use_temporal,
|
214 |
+
augment_temporal_attention=augment_temporal_attention,
|
215 |
+
n_frames=n_frames,
|
216 |
+
n_temp_heads=n_temp_heads,
|
217 |
+
first_frame_condition_mode=first_frame_condition_mode,
|
218 |
+
latent_channels=latent_channels,
|
219 |
+
rotary_emb=rotary_emb,
|
220 |
+
)
|
221 |
+
|
222 |
+
raise ValueError(f'{up_block_type} does not exist.')
|
223 |
+
|
224 |
+
|
225 |
+
class TemporalResnetBlock(nn.Module):
|
226 |
+
def __init__(
|
227 |
+
self,
|
228 |
+
*,
|
229 |
+
in_channels,
|
230 |
+
out_channels=None,
|
231 |
+
dropout=0.0,
|
232 |
+
temb_channels=512,
|
233 |
+
groups=32,
|
234 |
+
groups_out=None,
|
235 |
+
pre_norm=True,
|
236 |
+
eps=1e-6,
|
237 |
+
non_linearity="swish",
|
238 |
+
time_embedding_norm="default",
|
239 |
+
output_scale_factor=1.0,
|
240 |
+
# additional
|
241 |
+
n_frames=8,
|
242 |
+
):
|
243 |
+
super().__init__()
|
244 |
+
self.pre_norm = pre_norm
|
245 |
+
self.pre_norm = True
|
246 |
+
self.in_channels = in_channels
|
247 |
+
out_channels = in_channels if out_channels is None else out_channels
|
248 |
+
self.out_channels = out_channels
|
249 |
+
self.time_embedding_norm = time_embedding_norm
|
250 |
+
self.output_scale_factor = output_scale_factor
|
251 |
+
|
252 |
+
if groups_out is None:
|
253 |
+
groups_out = groups
|
254 |
+
|
255 |
+
self.norm1 = torch.nn.GroupNorm(num_groups=groups, num_channels=in_channels, eps=eps, affine=True)
|
256 |
+
|
257 |
+
self.conv1 = Conv3DLayer(in_channels, out_channels, n_frames=n_frames)
|
258 |
+
|
259 |
+
if temb_channels is not None:
|
260 |
+
if self.time_embedding_norm == "default":
|
261 |
+
time_emb_proj_out_channels = out_channels
|
262 |
+
elif self.time_embedding_norm == "scale_shift":
|
263 |
+
time_emb_proj_out_channels = out_channels * 2
|
264 |
+
else:
|
265 |
+
raise ValueError(f"unknown time_embedding_norm : {self.time_embedding_norm} ")
|
266 |
+
|
267 |
+
self.time_emb_proj = torch.nn.Linear(temb_channels, time_emb_proj_out_channels)
|
268 |
+
else:
|
269 |
+
self.time_emb_proj = None
|
270 |
+
|
271 |
+
self.norm2 = torch.nn.GroupNorm(num_groups=groups_out, num_channels=out_channels, eps=eps, affine=True)
|
272 |
+
|
273 |
+
self.dropout = torch.nn.Dropout(dropout)
|
274 |
+
self.conv2 = Conv3DLayer(out_channels, out_channels, n_frames=n_frames)
|
275 |
+
|
276 |
+
self.nonlinearity = get_activation(non_linearity)
|
277 |
+
|
278 |
+
self.alpha = nn.Parameter(torch.ones(1))
|
279 |
+
|
280 |
+
def forward(self, input_tensor, temb=None):
|
281 |
+
hidden_states = input_tensor
|
282 |
+
|
283 |
+
hidden_states = self.norm1(hidden_states)
|
284 |
+
hidden_states = self.nonlinearity(hidden_states)
|
285 |
+
|
286 |
+
hidden_states = self.conv1(hidden_states)
|
287 |
+
|
288 |
+
if temb is not None:
|
289 |
+
temb = self.time_emb_proj(self.nonlinearity(temb))[:, :, None, None, None]
|
290 |
+
|
291 |
+
if temb is not None and self.time_embedding_norm == "default":
|
292 |
+
hidden_states = hidden_states + temb
|
293 |
+
|
294 |
+
hidden_states = self.norm2(hidden_states)
|
295 |
+
|
296 |
+
if temb is not None and self.time_embedding_norm == "scale_shift":
|
297 |
+
scale, shift = torch.chunk(temb, 2, dim=1)
|
298 |
+
hidden_states = hidden_states * (1 + scale) + shift
|
299 |
+
|
300 |
+
hidden_states = self.nonlinearity(hidden_states)
|
301 |
+
|
302 |
+
hidden_states = self.dropout(hidden_states)
|
303 |
+
hidden_states = self.conv2(hidden_states)
|
304 |
+
|
305 |
+
output_tensor = (input_tensor + hidden_states) / self.output_scale_factor
|
306 |
+
|
307 |
+
# weighted sum between spatial and temporal features
|
308 |
+
with torch.no_grad():
|
309 |
+
self.alpha.clamp_(0, 1)
|
310 |
+
|
311 |
+
output_tensor = self.alpha * input_tensor + (1 - self.alpha) * output_tensor
|
312 |
+
|
313 |
+
return output_tensor
|
314 |
+
|
315 |
+
|
316 |
+
class Conv3DLayer(nn.Conv3d):
|
317 |
+
def __init__(self, in_dim, out_dim, n_frames):
|
318 |
+
k, p = (3, 1, 1), (1, 0, 0)
|
319 |
+
super().__init__(in_channels=in_dim, out_channels=out_dim, kernel_size=k, stride=1, padding=p)
|
320 |
+
|
321 |
+
self.to_3d = Rearrange('(b t) c h w -> b c t h w', t=n_frames)
|
322 |
+
self.to_2d = Rearrange('b c t h w -> (b t) c h w')
|
323 |
+
|
324 |
+
def forward(self, x):
|
325 |
+
h = self.to_3d(x)
|
326 |
+
h = super().forward(h)
|
327 |
+
out = self.to_2d(h)
|
328 |
+
return out
|
329 |
+
|
330 |
+
|
331 |
+
class IdentityLayer(nn.Identity):
|
332 |
+
def __init__(self, return_trans2d_output, *args, **kwargs):
|
333 |
+
super().__init__()
|
334 |
+
self.return_trans2d_output = return_trans2d_output
|
335 |
+
|
336 |
+
def forward(self, x, *args, **kwargs):
|
337 |
+
if self.return_trans2d_output:
|
338 |
+
return Transformer2DModelOutput(sample=x)
|
339 |
+
else:
|
340 |
+
return x
|
341 |
+
|
342 |
+
|
343 |
+
class VideoLDMCrossAttnDownBlock(nn.Module):
|
344 |
+
def __init__(
|
345 |
+
self,
|
346 |
+
in_channels: int,
|
347 |
+
out_channels: int,
|
348 |
+
temb_channels: int,
|
349 |
+
dropout: float = 0.0,
|
350 |
+
num_layers: int = 1,
|
351 |
+
transformer_layers_per_block: int = 1,
|
352 |
+
resnet_eps: float = 1e-6,
|
353 |
+
resnet_time_scale_shift: str = "default",
|
354 |
+
resnet_act_fn: str = "swish",
|
355 |
+
resnet_groups: int = 32,
|
356 |
+
resnet_pre_norm: bool = True,
|
357 |
+
num_attention_heads=1,
|
358 |
+
cross_attention_dim=1280,
|
359 |
+
output_scale_factor=1.0,
|
360 |
+
downsample_padding=1,
|
361 |
+
add_downsample=True,
|
362 |
+
dual_cross_attention=False,
|
363 |
+
use_linear_projection=False,
|
364 |
+
only_cross_attention=False,
|
365 |
+
upcast_attention=False,
|
366 |
+
attention_type="default",
|
367 |
+
# additional
|
368 |
+
use_temporal=True,
|
369 |
+
augment_temporal_attention=False,
|
370 |
+
n_frames=8,
|
371 |
+
n_temp_heads=8,
|
372 |
+
first_frame_condition_mode="none",
|
373 |
+
latent_channels=4,
|
374 |
+
rotary_emb=False,
|
375 |
+
):
|
376 |
+
super().__init__()
|
377 |
+
|
378 |
+
self.use_temporal = use_temporal
|
379 |
+
|
380 |
+
self.n_frames = n_frames
|
381 |
+
self.first_frame_condition_mode = first_frame_condition_mode
|
382 |
+
if self.first_frame_condition_mode == "conv2d":
|
383 |
+
self.first_frame_conv = nn.Conv2d(latent_channels, in_channels, kernel_size=1)
|
384 |
+
|
385 |
+
resnets = []
|
386 |
+
attentions = []
|
387 |
+
|
388 |
+
self.n_frames = n_frames
|
389 |
+
self.n_temp_heads = n_temp_heads
|
390 |
+
|
391 |
+
self.has_cross_attention = True
|
392 |
+
self.num_attention_heads = num_attention_heads
|
393 |
+
|
394 |
+
for i in range(num_layers):
|
395 |
+
in_channels = in_channels if i == 0 else out_channels
|
396 |
+
resnets.append(
|
397 |
+
ResnetBlock2D(
|
398 |
+
in_channels=in_channels,
|
399 |
+
out_channels=out_channels,
|
400 |
+
temb_channels=temb_channels,
|
401 |
+
eps=resnet_eps,
|
402 |
+
groups=resnet_groups,
|
403 |
+
dropout=dropout,
|
404 |
+
time_embedding_norm=resnet_time_scale_shift,
|
405 |
+
non_linearity=resnet_act_fn,
|
406 |
+
output_scale_factor=output_scale_factor,
|
407 |
+
pre_norm=resnet_pre_norm,
|
408 |
+
)
|
409 |
+
)
|
410 |
+
if not dual_cross_attention:
|
411 |
+
attentions.append(
|
412 |
+
Transformer2DConditionModel(
|
413 |
+
num_attention_heads,
|
414 |
+
out_channels // num_attention_heads,
|
415 |
+
in_channels=out_channels,
|
416 |
+
num_layers=transformer_layers_per_block,
|
417 |
+
cross_attention_dim=cross_attention_dim,
|
418 |
+
norm_num_groups=resnet_groups,
|
419 |
+
use_linear_projection=use_linear_projection,
|
420 |
+
only_cross_attention=only_cross_attention,
|
421 |
+
upcast_attention=upcast_attention,
|
422 |
+
attention_type=attention_type,
|
423 |
+
# additional
|
424 |
+
n_frames=n_frames,
|
425 |
+
)
|
426 |
+
)
|
427 |
+
else:
|
428 |
+
attentions.append(
|
429 |
+
DualTransformer2DModel(
|
430 |
+
num_attention_heads,
|
431 |
+
out_channels // num_attention_heads,
|
432 |
+
in_channels=out_channels,
|
433 |
+
num_layers=1,
|
434 |
+
cross_attention_dim=cross_attention_dim,
|
435 |
+
norm_num_groups=resnet_groups,
|
436 |
+
)
|
437 |
+
)
|
438 |
+
self.attentions = nn.ModuleList(attentions)
|
439 |
+
self.resnets = nn.ModuleList(resnets)
|
440 |
+
|
441 |
+
if add_downsample:
|
442 |
+
self.downsamplers = nn.ModuleList(
|
443 |
+
[
|
444 |
+
Downsample2D(
|
445 |
+
out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
|
446 |
+
)
|
447 |
+
]
|
448 |
+
)
|
449 |
+
else:
|
450 |
+
self.downsamplers = None
|
451 |
+
|
452 |
+
self.gradient_checkpointing = False
|
453 |
+
|
454 |
+
# >>> Temporal Layers >>>
|
455 |
+
conv3ds = []
|
456 |
+
tempo_attns = []
|
457 |
+
|
458 |
+
for i in range(num_layers):
|
459 |
+
if self.use_temporal:
|
460 |
+
conv3ds.append(
|
461 |
+
TemporalResnetBlock(
|
462 |
+
in_channels=out_channels,
|
463 |
+
out_channels=out_channels,
|
464 |
+
n_frames=n_frames,
|
465 |
+
)
|
466 |
+
)
|
467 |
+
|
468 |
+
tempo_attns.append(
|
469 |
+
Transformer2DConditionModel(
|
470 |
+
n_temp_heads,
|
471 |
+
out_channels // n_temp_heads,
|
472 |
+
in_channels=out_channels,
|
473 |
+
num_layers=transformer_layers_per_block,
|
474 |
+
cross_attention_dim=cross_attention_dim,
|
475 |
+
norm_num_groups=resnet_groups,
|
476 |
+
use_linear_projection=use_linear_projection,
|
477 |
+
only_cross_attention=only_cross_attention,
|
478 |
+
upcast_attention=upcast_attention,
|
479 |
+
attention_type=attention_type,
|
480 |
+
# additional
|
481 |
+
n_frames=n_frames,
|
482 |
+
is_temporal=True,
|
483 |
+
augment_temporal_attention=augment_temporal_attention,
|
484 |
+
rotary_emb=rotary_emb
|
485 |
+
)
|
486 |
+
)
|
487 |
+
else:
|
488 |
+
conv3ds.append(IdentityLayer(return_trans2d_output=False))
|
489 |
+
tempo_attns.append(IdentityLayer(return_trans2d_output=True))
|
490 |
+
|
491 |
+
self.conv3ds = nn.ModuleList(conv3ds)
|
492 |
+
self.tempo_attns = nn.ModuleList(tempo_attns)
|
493 |
+
# <<< Temporal Layers <<<
|
494 |
+
|
495 |
+
def forward(
|
496 |
+
self,
|
497 |
+
hidden_states: torch.FloatTensor,
|
498 |
+
temb: Optional[torch.FloatTensor] = None,
|
499 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
500 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
501 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
502 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
503 |
+
# additional
|
504 |
+
first_frame_latents=None,
|
505 |
+
):
|
506 |
+
condition_on_first_frame = (self.first_frame_condition_mode != "none" and self.first_frame_condition_mode != "input_only")
|
507 |
+
# input shape: hidden_states = (b f) c h w, first_frame_latents = b c 1 h w
|
508 |
+
if self.first_frame_condition_mode == "conv2d":
|
509 |
+
hidden_states = rearrange(hidden_states, '(b t) c h w -> b c t h w', t=self.n_frames)
|
510 |
+
hidden_height = hidden_states.shape[3]
|
511 |
+
first_frame_height = first_frame_latents.shape[3]
|
512 |
+
downsample_ratio = hidden_height / first_frame_height
|
513 |
+
first_frame_latents = F.interpolate(first_frame_latents.squeeze(2), scale_factor=downsample_ratio, mode="nearest")
|
514 |
+
first_frame_latents = self.first_frame_conv(first_frame_latents).unsqueeze(2)
|
515 |
+
hidden_states[:, :, 0:1, :, :] = first_frame_latents
|
516 |
+
hidden_states = rearrange(hidden_states, 'b c t h w -> (b t) c h w', t=self.n_frames)
|
517 |
+
|
518 |
+
output_states = ()
|
519 |
+
|
520 |
+
for resnet, conv3d, attn, tempo_attn in zip(self.resnets, self.conv3ds, self.attentions, self.tempo_attns):
|
521 |
+
|
522 |
+
hidden_states = resnet(hidden_states, temb)
|
523 |
+
hidden_states = conv3d(hidden_states)
|
524 |
+
hidden_states = attn(
|
525 |
+
hidden_states,
|
526 |
+
encoder_hidden_states=encoder_hidden_states,
|
527 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
528 |
+
condition_on_first_frame=condition_on_first_frame,
|
529 |
+
).sample
|
530 |
+
hidden_states = tempo_attn(
|
531 |
+
hidden_states,
|
532 |
+
encoder_hidden_states=encoder_hidden_states,
|
533 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
534 |
+
condition_on_first_frame=False,
|
535 |
+
).sample
|
536 |
+
|
537 |
+
output_states += (hidden_states,)
|
538 |
+
|
539 |
+
if self.downsamplers is not None:
|
540 |
+
for downsampler in self.downsamplers:
|
541 |
+
hidden_states = downsampler(hidden_states)
|
542 |
+
|
543 |
+
output_states += (hidden_states,)
|
544 |
+
|
545 |
+
return hidden_states, output_states
|
546 |
+
|
547 |
+
|
548 |
+
class VideoLDMCrossAttnUpBlock(nn.Module):
|
549 |
+
def __init__(
|
550 |
+
self,
|
551 |
+
in_channels: int,
|
552 |
+
out_channels: int,
|
553 |
+
prev_output_channel: int,
|
554 |
+
temb_channels: int,
|
555 |
+
dropout: float = 0.0,
|
556 |
+
num_layers: int = 1,
|
557 |
+
transformer_layers_per_block: int = 1,
|
558 |
+
resnet_eps: float = 1e-6,
|
559 |
+
resnet_time_scale_shift: str = "default",
|
560 |
+
resnet_act_fn: str = "swish",
|
561 |
+
resnet_groups: int = 32,
|
562 |
+
resnet_pre_norm: bool = True,
|
563 |
+
num_attention_heads=1,
|
564 |
+
cross_attention_dim=1280,
|
565 |
+
output_scale_factor=1.0,
|
566 |
+
add_upsample=True,
|
567 |
+
dual_cross_attention=False,
|
568 |
+
use_linear_projection=False,
|
569 |
+
only_cross_attention=False,
|
570 |
+
upcast_attention=False,
|
571 |
+
attention_type="default",
|
572 |
+
# additional
|
573 |
+
use_temporal=True,
|
574 |
+
augment_temporal_attention=False,
|
575 |
+
n_frames=8,
|
576 |
+
n_temp_heads=8,
|
577 |
+
first_frame_condition_mode="none",
|
578 |
+
latent_channels=4,
|
579 |
+
rotary_emb=False,
|
580 |
+
):
|
581 |
+
super().__init__()
|
582 |
+
|
583 |
+
self.use_temporal = use_temporal
|
584 |
+
|
585 |
+
self.n_frames = n_frames
|
586 |
+
self.first_frame_condition_mode = first_frame_condition_mode
|
587 |
+
if self.first_frame_condition_mode == "conv2d":
|
588 |
+
self.first_frame_conv = nn.Conv2d(latent_channels, prev_output_channel, kernel_size=1)
|
589 |
+
|
590 |
+
resnets = []
|
591 |
+
attentions = []
|
592 |
+
|
593 |
+
self.n_frames = n_frames
|
594 |
+
self.n_temp_heads = n_temp_heads
|
595 |
+
|
596 |
+
self.has_cross_attention = True
|
597 |
+
self.num_attention_heads = num_attention_heads
|
598 |
+
|
599 |
+
for i in range(num_layers):
|
600 |
+
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
|
601 |
+
resnet_in_channels = prev_output_channel if i == 0 else out_channels
|
602 |
+
|
603 |
+
resnets.append(
|
604 |
+
ResnetBlock2D(
|
605 |
+
in_channels=resnet_in_channels + res_skip_channels,
|
606 |
+
out_channels=out_channels,
|
607 |
+
temb_channels=temb_channels,
|
608 |
+
eps=resnet_eps,
|
609 |
+
groups=resnet_groups,
|
610 |
+
dropout=dropout,
|
611 |
+
time_embedding_norm=resnet_time_scale_shift,
|
612 |
+
non_linearity=resnet_act_fn,
|
613 |
+
output_scale_factor=output_scale_factor,
|
614 |
+
pre_norm=resnet_pre_norm,
|
615 |
+
)
|
616 |
+
)
|
617 |
+
if not dual_cross_attention:
|
618 |
+
attentions.append(
|
619 |
+
Transformer2DConditionModel(
|
620 |
+
num_attention_heads,
|
621 |
+
out_channels // num_attention_heads,
|
622 |
+
in_channels=out_channels,
|
623 |
+
num_layers=transformer_layers_per_block,
|
624 |
+
cross_attention_dim=cross_attention_dim,
|
625 |
+
norm_num_groups=resnet_groups,
|
626 |
+
use_linear_projection=use_linear_projection,
|
627 |
+
only_cross_attention=only_cross_attention,
|
628 |
+
upcast_attention=upcast_attention,
|
629 |
+
attention_type=attention_type,
|
630 |
+
# additional
|
631 |
+
n_frames=n_frames,
|
632 |
+
)
|
633 |
+
)
|
634 |
+
else:
|
635 |
+
attentions.append(
|
636 |
+
DualTransformer2DModel(
|
637 |
+
num_attention_heads,
|
638 |
+
out_channels // num_attention_heads,
|
639 |
+
in_channels=out_channels,
|
640 |
+
num_layers=1,
|
641 |
+
cross_attention_dim=cross_attention_dim,
|
642 |
+
norm_num_groups=resnet_groups,
|
643 |
+
)
|
644 |
+
)
|
645 |
+
self.attentions = nn.ModuleList(attentions)
|
646 |
+
self.resnets = nn.ModuleList(resnets)
|
647 |
+
|
648 |
+
if add_upsample:
|
649 |
+
self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
|
650 |
+
else:
|
651 |
+
self.upsamplers = None
|
652 |
+
|
653 |
+
self.gradient_checkpointing = False
|
654 |
+
|
655 |
+
# >>> Temporal Layers >>>
|
656 |
+
conv3ds = []
|
657 |
+
tempo_attns = []
|
658 |
+
|
659 |
+
for i in range(num_layers):
|
660 |
+
if self.use_temporal:
|
661 |
+
conv3ds.append(
|
662 |
+
TemporalResnetBlock(
|
663 |
+
in_channels=out_channels,
|
664 |
+
out_channels=out_channels,
|
665 |
+
n_frames=n_frames,
|
666 |
+
)
|
667 |
+
)
|
668 |
+
|
669 |
+
tempo_attns.append(
|
670 |
+
Transformer2DConditionModel(
|
671 |
+
n_temp_heads,
|
672 |
+
out_channels // n_temp_heads,
|
673 |
+
in_channels=out_channels,
|
674 |
+
num_layers=transformer_layers_per_block,
|
675 |
+
cross_attention_dim=cross_attention_dim,
|
676 |
+
norm_num_groups=resnet_groups,
|
677 |
+
use_linear_projection=use_linear_projection,
|
678 |
+
only_cross_attention=only_cross_attention,
|
679 |
+
upcast_attention=upcast_attention,
|
680 |
+
attention_type=attention_type,
|
681 |
+
# additional
|
682 |
+
n_frames=n_frames,
|
683 |
+
augment_temporal_attention=augment_temporal_attention,
|
684 |
+
is_temporal=True,
|
685 |
+
rotary_emb=rotary_emb,
|
686 |
+
)
|
687 |
+
)
|
688 |
+
else:
|
689 |
+
conv3ds.append(IdentityLayer(return_trans2d_output=False))
|
690 |
+
tempo_attns.append(IdentityLayer(return_trans2d_output=True))
|
691 |
+
|
692 |
+
self.conv3ds = nn.ModuleList(conv3ds)
|
693 |
+
self.tempo_attns = nn.ModuleList(tempo_attns)
|
694 |
+
# <<< Temporal Layers <<<
|
695 |
+
|
696 |
+
def forward(
|
697 |
+
self,
|
698 |
+
hidden_states: torch.FloatTensor,
|
699 |
+
res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
|
700 |
+
temb: Optional[torch.FloatTensor] = None,
|
701 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
702 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
703 |
+
upsample_size: Optional[int] = None,
|
704 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
705 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
706 |
+
# additional
|
707 |
+
first_frame_latents=None,
|
708 |
+
):
|
709 |
+
condition_on_first_frame = (self.first_frame_condition_mode != "none" and self.first_frame_condition_mode != "input_only")
|
710 |
+
# input shape: hidden_states = (b f) c h w, first_frame_latents = b c 1 h w
|
711 |
+
if self.first_frame_condition_mode == "conv2d":
|
712 |
+
hidden_states = rearrange(hidden_states, '(b t) c h w -> b c t h w', t=self.n_frames)
|
713 |
+
hidden_height = hidden_states.shape[3]
|
714 |
+
first_frame_height = first_frame_latents.shape[3]
|
715 |
+
downsample_ratio = hidden_height / first_frame_height
|
716 |
+
first_frame_latents = F.interpolate(first_frame_latents.squeeze(2), scale_factor=downsample_ratio, mode="nearest")
|
717 |
+
first_frame_latents = self.first_frame_conv(first_frame_latents).unsqueeze(2)
|
718 |
+
hidden_states[:, :, 0:1, :, :] = first_frame_latents
|
719 |
+
hidden_states = rearrange(hidden_states, 'b c t h w -> (b t) c h w', t=self.n_frames)
|
720 |
+
|
721 |
+
for resnet, conv3d, attn, tempo_attn in zip(self.resnets, self.conv3ds, self.attentions, self.tempo_attns):
|
722 |
+
|
723 |
+
res_hidden_states = res_hidden_states_tuple[-1]
|
724 |
+
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
725 |
+
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
726 |
+
|
727 |
+
hidden_states = resnet(hidden_states, temb)
|
728 |
+
hidden_states = conv3d(hidden_states)
|
729 |
+
hidden_states = attn(
|
730 |
+
hidden_states,
|
731 |
+
encoder_hidden_states=encoder_hidden_states,
|
732 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
733 |
+
condition_on_first_frame=condition_on_first_frame,
|
734 |
+
).sample
|
735 |
+
hidden_states = tempo_attn(
|
736 |
+
hidden_states,
|
737 |
+
encoder_hidden_states=encoder_hidden_states,
|
738 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
739 |
+
condition_on_first_frame=False,
|
740 |
+
).sample
|
741 |
+
|
742 |
+
if self.upsamplers is not None:
|
743 |
+
for upsampler in self.upsamplers:
|
744 |
+
hidden_states = upsampler(hidden_states, upsample_size)
|
745 |
+
return hidden_states
|
746 |
+
|
747 |
+
|
748 |
+
class VideoLDMUNetMidBlock2DCrossAttn(nn.Module):
|
749 |
+
def __init__(
|
750 |
+
self,
|
751 |
+
in_channels: int,
|
752 |
+
temb_channels: int,
|
753 |
+
dropout: float = 0.0,
|
754 |
+
num_layers: int = 1,
|
755 |
+
transformer_layers_per_block: int = 1,
|
756 |
+
resnet_eps: float = 1e-6,
|
757 |
+
resnet_time_scale_shift: str = "default",
|
758 |
+
resnet_act_fn: str = "swish",
|
759 |
+
resnet_groups: int = 32,
|
760 |
+
resnet_pre_norm: bool = True,
|
761 |
+
num_attention_heads=1,
|
762 |
+
output_scale_factor=1.0,
|
763 |
+
cross_attention_dim=1280,
|
764 |
+
dual_cross_attention=False,
|
765 |
+
use_linear_projection=False,
|
766 |
+
upcast_attention=False,
|
767 |
+
attention_type="default",
|
768 |
+
# additional
|
769 |
+
use_temporal=True,
|
770 |
+
n_frames: int = 8,
|
771 |
+
first_frame_condition_mode="none",
|
772 |
+
latent_channels=4,
|
773 |
+
):
|
774 |
+
super().__init__()
|
775 |
+
|
776 |
+
self.use_temporal = use_temporal
|
777 |
+
|
778 |
+
self.n_frames = n_frames
|
779 |
+
self.first_frame_condition_mode = first_frame_condition_mode
|
780 |
+
if self.first_frame_condition_mode == "conv2d":
|
781 |
+
self.first_frame_conv = nn.Conv2d(latent_channels, in_channels, kernel_size=1)
|
782 |
+
|
783 |
+
self.has_cross_attention = True
|
784 |
+
self.num_attention_heads = num_attention_heads
|
785 |
+
resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
|
786 |
+
|
787 |
+
# there is always at least one resnet
|
788 |
+
resnets = [
|
789 |
+
ResnetBlock2D(
|
790 |
+
in_channels=in_channels,
|
791 |
+
out_channels=in_channels,
|
792 |
+
temb_channels=temb_channels,
|
793 |
+
eps=resnet_eps,
|
794 |
+
groups=resnet_groups,
|
795 |
+
dropout=dropout,
|
796 |
+
time_embedding_norm=resnet_time_scale_shift,
|
797 |
+
non_linearity=resnet_act_fn,
|
798 |
+
output_scale_factor=output_scale_factor,
|
799 |
+
pre_norm=resnet_pre_norm,
|
800 |
+
)
|
801 |
+
]
|
802 |
+
if self.use_temporal:
|
803 |
+
conv3ds = [
|
804 |
+
TemporalResnetBlock(
|
805 |
+
in_channels=in_channels,
|
806 |
+
out_channels=in_channels,
|
807 |
+
n_frames=n_frames,
|
808 |
+
)
|
809 |
+
]
|
810 |
+
else:
|
811 |
+
conv3ds = [IdentityLayer(return_trans2d_output=False)]
|
812 |
+
|
813 |
+
attentions = []
|
814 |
+
|
815 |
+
for _ in range(num_layers):
|
816 |
+
if not dual_cross_attention:
|
817 |
+
attentions.append(
|
818 |
+
Transformer2DConditionModel(
|
819 |
+
num_attention_heads,
|
820 |
+
in_channels // num_attention_heads,
|
821 |
+
in_channels=in_channels,
|
822 |
+
num_layers=transformer_layers_per_block,
|
823 |
+
cross_attention_dim=cross_attention_dim,
|
824 |
+
norm_num_groups=resnet_groups,
|
825 |
+
use_linear_projection=use_linear_projection,
|
826 |
+
upcast_attention=upcast_attention,
|
827 |
+
attention_type=attention_type,
|
828 |
+
# additional
|
829 |
+
n_frames=n_frames,
|
830 |
+
)
|
831 |
+
)
|
832 |
+
else:
|
833 |
+
attentions.append(
|
834 |
+
DualTransformer2DModel(
|
835 |
+
num_attention_heads,
|
836 |
+
in_channels // num_attention_heads,
|
837 |
+
in_channels=in_channels,
|
838 |
+
num_layers=1,
|
839 |
+
cross_attention_dim=cross_attention_dim,
|
840 |
+
norm_num_groups=resnet_groups,
|
841 |
+
)
|
842 |
+
)
|
843 |
+
resnets.append(
|
844 |
+
ResnetBlock2D(
|
845 |
+
in_channels=in_channels,
|
846 |
+
out_channels=in_channels,
|
847 |
+
temb_channels=temb_channels,
|
848 |
+
eps=resnet_eps,
|
849 |
+
groups=resnet_groups,
|
850 |
+
dropout=dropout,
|
851 |
+
time_embedding_norm=resnet_time_scale_shift,
|
852 |
+
non_linearity=resnet_act_fn,
|
853 |
+
output_scale_factor=output_scale_factor,
|
854 |
+
pre_norm=resnet_pre_norm,
|
855 |
+
)
|
856 |
+
)
|
857 |
+
if self.use_temporal:
|
858 |
+
conv3ds.append(
|
859 |
+
TemporalResnetBlock(
|
860 |
+
in_channels=in_channels,
|
861 |
+
out_channels=in_channels,
|
862 |
+
n_frames=n_frames,
|
863 |
+
)
|
864 |
+
)
|
865 |
+
else:
|
866 |
+
conv3ds.append(IdentityLayer(return_trans2d_output=False))
|
867 |
+
|
868 |
+
self.attentions = nn.ModuleList(attentions)
|
869 |
+
self.resnets = nn.ModuleList(resnets)
|
870 |
+
self.conv3ds = nn.ModuleList(conv3ds)
|
871 |
+
|
872 |
+
self.gradient_checkpointing = False
|
873 |
+
|
874 |
+
def forward(
|
875 |
+
self,
|
876 |
+
hidden_states: torch.FloatTensor,
|
877 |
+
temb: Optional[torch.FloatTensor] = None,
|
878 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
879 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
880 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
881 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
882 |
+
# additional
|
883 |
+
first_frame_latents=None,
|
884 |
+
) -> torch.FloatTensor:
|
885 |
+
condition_on_first_frame = (self.first_frame_condition_mode != "none" and self.first_frame_condition_mode != "input_only")
|
886 |
+
# input shape: hidden_states = (b f) c h w, first_frame_latents = b c 1 h w
|
887 |
+
if self.first_frame_condition_mode == "conv2d":
|
888 |
+
hidden_states = rearrange(hidden_states, '(b t) c h w -> b c t h w', t=self.n_frames)
|
889 |
+
hidden_height = hidden_states.shape[3]
|
890 |
+
first_frame_height = first_frame_latents.shape[3]
|
891 |
+
downsample_ratio = hidden_height / first_frame_height
|
892 |
+
first_frame_latents = F.interpolate(first_frame_latents.squeeze(2), scale_factor=downsample_ratio, mode="nearest")
|
893 |
+
first_frame_latents = self.first_frame_conv(first_frame_latents).unsqueeze(2)
|
894 |
+
hidden_states[:, :, 0:1, :, :] = first_frame_latents
|
895 |
+
hidden_states = rearrange(hidden_states, 'b c t h w -> (b t) c h w', t=self.n_frames)
|
896 |
+
|
897 |
+
lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0
|
898 |
+
hidden_states = self.resnets[0](hidden_states, temb, scale=lora_scale)
|
899 |
+
hidden_states = self.conv3ds[0](hidden_states)
|
900 |
+
for attn, resnet, conv3d in zip(self.attentions, self.resnets[1:], self.conv3ds[1:]):
|
901 |
+
if self.training and self.gradient_checkpointing:
|
902 |
+
|
903 |
+
def create_custom_forward(module, return_dict=None):
|
904 |
+
def custom_forward(*inputs):
|
905 |
+
if return_dict is not None:
|
906 |
+
return module(*inputs, return_dict=return_dict)
|
907 |
+
else:
|
908 |
+
return module(*inputs)
|
909 |
+
|
910 |
+
return custom_forward
|
911 |
+
|
912 |
+
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
913 |
+
hidden_states = attn(
|
914 |
+
hidden_states,
|
915 |
+
encoder_hidden_states=encoder_hidden_states,
|
916 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
917 |
+
attention_mask=attention_mask,
|
918 |
+
encoder_attention_mask=encoder_attention_mask,
|
919 |
+
return_dict=False,
|
920 |
+
# additional
|
921 |
+
condition_on_first_frame=condition_on_first_frame,
|
922 |
+
)[0]
|
923 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
924 |
+
create_custom_forward(resnet),
|
925 |
+
hidden_states,
|
926 |
+
temb,
|
927 |
+
**ckpt_kwargs,
|
928 |
+
)
|
929 |
+
hidden_states = conv3d(hidden_states)
|
930 |
+
else:
|
931 |
+
hidden_states = attn(
|
932 |
+
hidden_states,
|
933 |
+
encoder_hidden_states=encoder_hidden_states,
|
934 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
935 |
+
attention_mask=attention_mask,
|
936 |
+
encoder_attention_mask=encoder_attention_mask,
|
937 |
+
return_dict=False,
|
938 |
+
# additional
|
939 |
+
condition_on_first_frame=condition_on_first_frame,
|
940 |
+
)[0]
|
941 |
+
hidden_states = resnet(hidden_states, temb, scale=lora_scale)
|
942 |
+
hidden_states = conv3d(hidden_states)
|
943 |
+
|
944 |
+
return hidden_states
|
945 |
+
|
946 |
+
|
947 |
+
class VideoLDMDownBlock(DownBlock2D):
|
948 |
+
def __init__(
|
949 |
+
self,
|
950 |
+
in_channels: int,
|
951 |
+
out_channels: int,
|
952 |
+
temb_channels: int,
|
953 |
+
dropout: float = 0.0,
|
954 |
+
num_layers: int = 1,
|
955 |
+
resnet_eps: float = 1e-6,
|
956 |
+
resnet_time_scale_shift: str = "default",
|
957 |
+
resnet_act_fn: str = "swish",
|
958 |
+
resnet_groups: int = 32,
|
959 |
+
resnet_pre_norm: bool = True,
|
960 |
+
output_scale_factor=1.0,
|
961 |
+
add_downsample=True,
|
962 |
+
downsample_padding=1,
|
963 |
+
# additional
|
964 |
+
use_temporal=True,
|
965 |
+
n_frames: int = 8,
|
966 |
+
first_frame_condition_mode="none",
|
967 |
+
latent_channels=4,
|
968 |
+
):
|
969 |
+
super().__init__(
|
970 |
+
in_channels,
|
971 |
+
out_channels,
|
972 |
+
temb_channels,
|
973 |
+
dropout,
|
974 |
+
num_layers,
|
975 |
+
resnet_eps,
|
976 |
+
resnet_time_scale_shift,
|
977 |
+
resnet_act_fn,
|
978 |
+
resnet_groups,
|
979 |
+
resnet_pre_norm,
|
980 |
+
output_scale_factor,
|
981 |
+
add_downsample,
|
982 |
+
downsample_padding,)
|
983 |
+
|
984 |
+
self.use_temporal = use_temporal
|
985 |
+
|
986 |
+
self.n_frames = n_frames
|
987 |
+
self.first_frame_condition_mode = first_frame_condition_mode
|
988 |
+
if self.first_frame_condition_mode == "conv2d":
|
989 |
+
self.first_frame_conv = nn.Conv2d(latent_channels, in_channels, kernel_size=1)
|
990 |
+
|
991 |
+
# >>> Temporal Layers >>>
|
992 |
+
conv3ds = []
|
993 |
+
for i in range(num_layers):
|
994 |
+
if self.use_temporal:
|
995 |
+
conv3ds.append(
|
996 |
+
TemporalResnetBlock(
|
997 |
+
in_channels=out_channels,
|
998 |
+
out_channels=out_channels,
|
999 |
+
n_frames=n_frames,
|
1000 |
+
)
|
1001 |
+
)
|
1002 |
+
else:
|
1003 |
+
conv3ds.append(IdentityLayer(return_trans2d_output=False))
|
1004 |
+
self.conv3ds = nn.ModuleList(conv3ds)
|
1005 |
+
# <<< Temporal Layers <<<
|
1006 |
+
|
1007 |
+
def forward(self, hidden_states, temb=None, scale: float = 1, first_frame_latents=None):
|
1008 |
+
# input shape: hidden_states = (b f) c h w, first_frame_latents = b c 1 h w
|
1009 |
+
if self.first_frame_condition_mode == "conv2d":
|
1010 |
+
hidden_states = rearrange(hidden_states, '(b t) c h w -> b c t h w', t=self.n_frames)
|
1011 |
+
hidden_height = hidden_states.shape[3]
|
1012 |
+
first_frame_height = first_frame_latents.shape[3]
|
1013 |
+
downsample_ratio = hidden_height / first_frame_height
|
1014 |
+
first_frame_latents = F.interpolate(first_frame_latents.squeeze(2), scale_factor=downsample_ratio, mode="nearest")
|
1015 |
+
first_frame_latents = self.first_frame_conv(first_frame_latents).unsqueeze(2)
|
1016 |
+
hidden_states[:, :, 0:1, :, :] = first_frame_latents
|
1017 |
+
hidden_states = rearrange(hidden_states, 'b c t h w -> (b t) c h w', t=self.n_frames)
|
1018 |
+
|
1019 |
+
output_states = ()
|
1020 |
+
|
1021 |
+
for resnet, conv3d in zip(self.resnets, self.conv3ds):
|
1022 |
+
if self.training and self.gradient_checkpointing:
|
1023 |
+
|
1024 |
+
def create_custom_forward(module):
|
1025 |
+
def custom_forward(*inputs):
|
1026 |
+
return module(*inputs)
|
1027 |
+
|
1028 |
+
return custom_forward
|
1029 |
+
|
1030 |
+
if is_torch_version(">=", "1.11.0"):
|
1031 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
1032 |
+
create_custom_forward(resnet), hidden_states, temb, use_reentrant=False
|
1033 |
+
)
|
1034 |
+
else:
|
1035 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
1036 |
+
create_custom_forward(resnet), hidden_states, temb
|
1037 |
+
)
|
1038 |
+
else:
|
1039 |
+
hidden_states = resnet(hidden_states, temb, scale=scale)
|
1040 |
+
|
1041 |
+
hidden_states = conv3d(hidden_states)
|
1042 |
+
|
1043 |
+
output_states = output_states + (hidden_states,)
|
1044 |
+
|
1045 |
+
if self.downsamplers is not None:
|
1046 |
+
for downsampler in self.downsamplers:
|
1047 |
+
hidden_states = downsampler(hidden_states, scale=scale)
|
1048 |
+
|
1049 |
+
output_states = output_states + (hidden_states,)
|
1050 |
+
|
1051 |
+
return hidden_states, output_states
|
1052 |
+
|
1053 |
+
|
1054 |
+
class VideoLDMUpBlock(UpBlock2D):
|
1055 |
+
def __init__(
|
1056 |
+
self,
|
1057 |
+
in_channels: int,
|
1058 |
+
prev_output_channel: int,
|
1059 |
+
out_channels: int,
|
1060 |
+
temb_channels: int,
|
1061 |
+
dropout: float = 0.0,
|
1062 |
+
num_layers: int = 1,
|
1063 |
+
resnet_eps: float = 1e-6,
|
1064 |
+
resnet_time_scale_shift: str = "default",
|
1065 |
+
resnet_act_fn: str = "swish",
|
1066 |
+
resnet_groups: int = 32,
|
1067 |
+
resnet_pre_norm: bool = True,
|
1068 |
+
output_scale_factor=1.0,
|
1069 |
+
add_upsample=True,
|
1070 |
+
# additional
|
1071 |
+
use_temporal=True,
|
1072 |
+
n_frames: int = 8,
|
1073 |
+
first_frame_condition_mode="none",
|
1074 |
+
latent_channels=4,
|
1075 |
+
):
|
1076 |
+
super().__init__(
|
1077 |
+
in_channels,
|
1078 |
+
prev_output_channel,
|
1079 |
+
out_channels,
|
1080 |
+
temb_channels,
|
1081 |
+
dropout,
|
1082 |
+
num_layers,
|
1083 |
+
resnet_eps,
|
1084 |
+
resnet_time_scale_shift,
|
1085 |
+
resnet_act_fn,
|
1086 |
+
resnet_groups,
|
1087 |
+
resnet_pre_norm,
|
1088 |
+
output_scale_factor,
|
1089 |
+
add_upsample,
|
1090 |
+
)
|
1091 |
+
|
1092 |
+
self.use_temporal = use_temporal
|
1093 |
+
|
1094 |
+
self.n_frames = n_frames
|
1095 |
+
self.first_frame_condition_mode = first_frame_condition_mode
|
1096 |
+
if self.first_frame_condition_mode == "conv2d":
|
1097 |
+
self.first_frame_conv = nn.Conv2d(latent_channels, prev_output_channel, kernel_size=1)
|
1098 |
+
|
1099 |
+
# >>> Temporal Layers >>>
|
1100 |
+
conv3ds = []
|
1101 |
+
for i in range(num_layers):
|
1102 |
+
if self.use_temporal:
|
1103 |
+
conv3ds.append(
|
1104 |
+
TemporalResnetBlock(
|
1105 |
+
in_channels=out_channels,
|
1106 |
+
out_channels=out_channels,
|
1107 |
+
n_frames=n_frames,
|
1108 |
+
)
|
1109 |
+
)
|
1110 |
+
else:
|
1111 |
+
conv3ds.append(IdentityLayer(return_trans2d_output=False))
|
1112 |
+
|
1113 |
+
self.conv3ds = nn.ModuleList(conv3ds)
|
1114 |
+
# <<< Temporal Layers <<<
|
1115 |
+
|
1116 |
+
def forward(self, hidden_states, res_hidden_states_tuple, temb=None, upsample_size=None, scale: float = 1, first_frame_latents=None):
|
1117 |
+
# input shape: hidden_states = (b f) c h w, first_frame_latents = b c 1 h w
|
1118 |
+
if self.first_frame_condition_mode == "conv2d":
|
1119 |
+
hidden_states = rearrange(hidden_states, '(b t) c h w -> b c t h w', t=self.n_frames)
|
1120 |
+
hidden_height = hidden_states.shape[3]
|
1121 |
+
first_frame_height = first_frame_latents.shape[3]
|
1122 |
+
downsample_ratio = hidden_height / first_frame_height
|
1123 |
+
first_frame_latents = F.interpolate(first_frame_latents.squeeze(2), scale_factor=downsample_ratio, mode="nearest")
|
1124 |
+
first_frame_latents = self.first_frame_conv(first_frame_latents).unsqueeze(2)
|
1125 |
+
hidden_states[:, :, 0:1, :, :] = first_frame_latents
|
1126 |
+
hidden_states = rearrange(hidden_states, 'b c t h w -> (b t) c h w', t=self.n_frames)
|
1127 |
+
|
1128 |
+
for resnet, conv3d in zip(self.resnets, self.conv3ds):
|
1129 |
+
# pop res hidden states
|
1130 |
+
res_hidden_states = res_hidden_states_tuple[-1]
|
1131 |
+
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
1132 |
+
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
1133 |
+
|
1134 |
+
if self.training and self.gradient_checkpointing:
|
1135 |
+
|
1136 |
+
def create_custom_forward(module):
|
1137 |
+
def custom_forward(*inputs):
|
1138 |
+
return module(*inputs)
|
1139 |
+
|
1140 |
+
return custom_forward
|
1141 |
+
|
1142 |
+
if is_torch_version(">=", "1.11.0"):
|
1143 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
1144 |
+
create_custom_forward(resnet), hidden_states, temb, use_reentrant=False
|
1145 |
+
)
|
1146 |
+
else:
|
1147 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
1148 |
+
create_custom_forward(resnet), hidden_states, temb
|
1149 |
+
)
|
1150 |
+
else:
|
1151 |
+
hidden_states = resnet(hidden_states, temb, scale=scale)
|
1152 |
+
|
1153 |
+
hidden_states = conv3d(hidden_states)
|
1154 |
+
|
1155 |
+
if self.upsamplers is not None:
|
1156 |
+
for upsampler in self.upsamplers:
|
1157 |
+
hidden_states = upsampler(hidden_states, upsample_size, scale=scale)
|
1158 |
+
|
1159 |
+
return hidden_states
|
consisti2v/pipelines/pipeline_autoregress_animation.py
ADDED
@@ -0,0 +1,615 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adapted from https://github.com/showlab/Tune-A-Video/blob/main/tuneavideo/pipelines/pipeline_tuneavideo.py
|
2 |
+
|
3 |
+
import inspect
|
4 |
+
from typing import Callable, List, Optional, Union
|
5 |
+
from dataclasses import dataclass
|
6 |
+
|
7 |
+
import math
|
8 |
+
import numpy as np
|
9 |
+
import torch
|
10 |
+
from tqdm import tqdm
|
11 |
+
|
12 |
+
from torchvision import transforms as T
|
13 |
+
from PIL import Image
|
14 |
+
|
15 |
+
from diffusers.utils import is_accelerate_available
|
16 |
+
from packaging import version
|
17 |
+
from transformers import CLIPTextModel, CLIPTokenizer
|
18 |
+
|
19 |
+
from diffusers.configuration_utils import FrozenDict
|
20 |
+
from diffusers.models import AutoencoderKL
|
21 |
+
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
|
22 |
+
from diffusers.schedulers import (
|
23 |
+
DDIMScheduler,
|
24 |
+
DPMSolverMultistepScheduler,
|
25 |
+
EulerAncestralDiscreteScheduler,
|
26 |
+
EulerDiscreteScheduler,
|
27 |
+
LMSDiscreteScheduler,
|
28 |
+
PNDMScheduler,
|
29 |
+
)
|
30 |
+
from diffusers.utils import deprecate, logging, BaseOutput
|
31 |
+
|
32 |
+
from einops import rearrange, repeat
|
33 |
+
|
34 |
+
from ..models.unet import UNet3DConditionModel
|
35 |
+
from ..utils.frameinit_utils import freq_mix_3d, get_freq_filter
|
36 |
+
|
37 |
+
|
38 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
39 |
+
|
40 |
+
# copied from https://github.com/huggingface/diffusers/blob/v0.23.0/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py#L59C1-L70C21
|
41 |
+
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
|
42 |
+
"""
|
43 |
+
Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
|
44 |
+
Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
|
45 |
+
"""
|
46 |
+
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
|
47 |
+
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
|
48 |
+
# rescale the results from guidance (fixes overexposure)
|
49 |
+
noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
|
50 |
+
# mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
|
51 |
+
noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
|
52 |
+
return noise_cfg
|
53 |
+
|
54 |
+
|
55 |
+
@dataclass
|
56 |
+
class AnimationPipelineOutput(BaseOutput):
|
57 |
+
videos: Union[torch.Tensor, np.ndarray]
|
58 |
+
|
59 |
+
|
60 |
+
class AutoregressiveAnimationPipeline(DiffusionPipeline):
|
61 |
+
_optional_components = []
|
62 |
+
|
63 |
+
def __init__(
|
64 |
+
self,
|
65 |
+
vae: AutoencoderKL,
|
66 |
+
text_encoder: CLIPTextModel,
|
67 |
+
tokenizer: CLIPTokenizer,
|
68 |
+
unet: UNet3DConditionModel,
|
69 |
+
scheduler: Union[
|
70 |
+
DDIMScheduler,
|
71 |
+
PNDMScheduler,
|
72 |
+
LMSDiscreteScheduler,
|
73 |
+
EulerDiscreteScheduler,
|
74 |
+
EulerAncestralDiscreteScheduler,
|
75 |
+
DPMSolverMultistepScheduler,
|
76 |
+
],
|
77 |
+
):
|
78 |
+
super().__init__()
|
79 |
+
|
80 |
+
if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
|
81 |
+
deprecation_message = (
|
82 |
+
f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
|
83 |
+
f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
|
84 |
+
"to update the config accordingly as leaving `steps_offset` might led to incorrect results"
|
85 |
+
" in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
|
86 |
+
" it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
|
87 |
+
" file"
|
88 |
+
)
|
89 |
+
deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False)
|
90 |
+
new_config = dict(scheduler.config)
|
91 |
+
new_config["steps_offset"] = 1
|
92 |
+
scheduler._internal_dict = FrozenDict(new_config)
|
93 |
+
|
94 |
+
if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True:
|
95 |
+
deprecation_message = (
|
96 |
+
f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`."
|
97 |
+
" `clip_sample` should be set to False in the configuration file. Please make sure to update the"
|
98 |
+
" config accordingly as not setting `clip_sample` in the config might lead to incorrect results in"
|
99 |
+
" future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very"
|
100 |
+
" nice if you could open a Pull request for the `scheduler/scheduler_config.json` file"
|
101 |
+
)
|
102 |
+
deprecate("clip_sample not set", "1.0.0", deprecation_message, standard_warn=False)
|
103 |
+
new_config = dict(scheduler.config)
|
104 |
+
new_config["clip_sample"] = False
|
105 |
+
scheduler._internal_dict = FrozenDict(new_config)
|
106 |
+
|
107 |
+
is_unet_version_less_0_9_0 = hasattr(unet.config, "_diffusers_version") and version.parse(
|
108 |
+
version.parse(unet.config._diffusers_version).base_version
|
109 |
+
) < version.parse("0.9.0.dev0")
|
110 |
+
is_unet_sample_size_less_64 = hasattr(unet.config, "sample_size") and unet.config.sample_size < 64
|
111 |
+
if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64:
|
112 |
+
deprecation_message = (
|
113 |
+
"The configuration file of the unet has set the default `sample_size` to smaller than"
|
114 |
+
" 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the"
|
115 |
+
" following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
|
116 |
+
" CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
|
117 |
+
" \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
|
118 |
+
" configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
|
119 |
+
" in the config might lead to incorrect results in future versions. If you have downloaded this"
|
120 |
+
" checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
|
121 |
+
" the `unet/config.json` file"
|
122 |
+
)
|
123 |
+
deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False)
|
124 |
+
new_config = dict(unet.config)
|
125 |
+
new_config["sample_size"] = 64
|
126 |
+
unet._internal_dict = FrozenDict(new_config)
|
127 |
+
|
128 |
+
self.register_modules(
|
129 |
+
vae=vae,
|
130 |
+
text_encoder=text_encoder,
|
131 |
+
tokenizer=tokenizer,
|
132 |
+
unet=unet,
|
133 |
+
scheduler=scheduler,
|
134 |
+
)
|
135 |
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
136 |
+
|
137 |
+
self.freq_filter = None
|
138 |
+
|
139 |
+
@torch.no_grad()
|
140 |
+
def init_filter(self, video_length, height, width, filter_params):
|
141 |
+
# initialize frequency filter for noise reinitialization
|
142 |
+
batch_size = 1
|
143 |
+
num_channels_latents = self.unet.config.in_channels
|
144 |
+
filter_shape = [
|
145 |
+
batch_size,
|
146 |
+
num_channels_latents,
|
147 |
+
video_length,
|
148 |
+
height // self.vae_scale_factor,
|
149 |
+
width // self.vae_scale_factor
|
150 |
+
]
|
151 |
+
# self.freq_filter = get_freq_filter(filter_shape, device=self._execution_device, params=filter_params)
|
152 |
+
self.freq_filter = get_freq_filter(
|
153 |
+
filter_shape,
|
154 |
+
device=self._execution_device,
|
155 |
+
filter_type=filter_params.method,
|
156 |
+
n=filter_params.n if filter_params.method=="butterworth" else None,
|
157 |
+
d_s=filter_params.d_s,
|
158 |
+
d_t=filter_params.d_t
|
159 |
+
)
|
160 |
+
|
161 |
+
def enable_vae_slicing(self):
|
162 |
+
self.vae.enable_slicing()
|
163 |
+
|
164 |
+
def disable_vae_slicing(self):
|
165 |
+
self.vae.disable_slicing()
|
166 |
+
|
167 |
+
def enable_sequential_cpu_offload(self, gpu_id=0):
|
168 |
+
if is_accelerate_available():
|
169 |
+
from accelerate import cpu_offload
|
170 |
+
else:
|
171 |
+
raise ImportError("Please install accelerate via `pip install accelerate`")
|
172 |
+
|
173 |
+
device = torch.device(f"cuda:{gpu_id}")
|
174 |
+
|
175 |
+
for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae]:
|
176 |
+
if cpu_offloaded_model is not None:
|
177 |
+
cpu_offload(cpu_offloaded_model, device)
|
178 |
+
|
179 |
+
|
180 |
+
@property
|
181 |
+
def _execution_device(self):
|
182 |
+
if self.device != torch.device("meta") or not hasattr(self.unet, "_hf_hook"):
|
183 |
+
return self.device
|
184 |
+
for module in self.unet.modules():
|
185 |
+
if (
|
186 |
+
hasattr(module, "_hf_hook")
|
187 |
+
and hasattr(module._hf_hook, "execution_device")
|
188 |
+
and module._hf_hook.execution_device is not None
|
189 |
+
):
|
190 |
+
return torch.device(module._hf_hook.execution_device)
|
191 |
+
return self.device
|
192 |
+
|
193 |
+
def _encode_prompt(self, prompt, device, num_videos_per_prompt, do_classifier_free_guidance, negative_prompt):
|
194 |
+
batch_size = len(prompt) if isinstance(prompt, list) else 1
|
195 |
+
|
196 |
+
text_inputs = self.tokenizer(
|
197 |
+
prompt,
|
198 |
+
padding="max_length",
|
199 |
+
max_length=self.tokenizer.model_max_length,
|
200 |
+
truncation=True,
|
201 |
+
return_tensors="pt",
|
202 |
+
)
|
203 |
+
text_input_ids = text_inputs.input_ids
|
204 |
+
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
205 |
+
|
206 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
|
207 |
+
removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1])
|
208 |
+
logger.warning(
|
209 |
+
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
210 |
+
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
|
211 |
+
)
|
212 |
+
|
213 |
+
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
|
214 |
+
attention_mask = text_inputs.attention_mask.to(device)
|
215 |
+
else:
|
216 |
+
attention_mask = None
|
217 |
+
|
218 |
+
text_embeddings = self.text_encoder(
|
219 |
+
text_input_ids.to(device),
|
220 |
+
attention_mask=attention_mask,
|
221 |
+
)
|
222 |
+
text_embeddings = text_embeddings[0]
|
223 |
+
|
224 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
225 |
+
bs_embed, seq_len, _ = text_embeddings.shape
|
226 |
+
text_embeddings = text_embeddings.repeat(1, num_videos_per_prompt, 1)
|
227 |
+
text_embeddings = text_embeddings.view(bs_embed * num_videos_per_prompt, seq_len, -1)
|
228 |
+
|
229 |
+
# get unconditional embeddings for classifier free guidance
|
230 |
+
if do_classifier_free_guidance is not None:
|
231 |
+
uncond_tokens: List[str]
|
232 |
+
if negative_prompt is None:
|
233 |
+
uncond_tokens = [""] * batch_size
|
234 |
+
elif type(prompt) is not type(negative_prompt):
|
235 |
+
raise TypeError(
|
236 |
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
237 |
+
f" {type(prompt)}."
|
238 |
+
)
|
239 |
+
elif isinstance(negative_prompt, str):
|
240 |
+
uncond_tokens = [negative_prompt]
|
241 |
+
elif batch_size != len(negative_prompt):
|
242 |
+
raise ValueError(
|
243 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
244 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
245 |
+
" the batch size of `prompt`."
|
246 |
+
)
|
247 |
+
else:
|
248 |
+
uncond_tokens = negative_prompt
|
249 |
+
|
250 |
+
max_length = text_input_ids.shape[-1]
|
251 |
+
uncond_input = self.tokenizer(
|
252 |
+
uncond_tokens,
|
253 |
+
padding="max_length",
|
254 |
+
max_length=max_length,
|
255 |
+
truncation=True,
|
256 |
+
return_tensors="pt",
|
257 |
+
)
|
258 |
+
|
259 |
+
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
|
260 |
+
attention_mask = uncond_input.attention_mask.to(device)
|
261 |
+
else:
|
262 |
+
attention_mask = None
|
263 |
+
|
264 |
+
uncond_embeddings = self.text_encoder(
|
265 |
+
uncond_input.input_ids.to(device),
|
266 |
+
attention_mask=attention_mask,
|
267 |
+
)
|
268 |
+
uncond_embeddings = uncond_embeddings[0]
|
269 |
+
|
270 |
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
271 |
+
seq_len = uncond_embeddings.shape[1]
|
272 |
+
uncond_embeddings = uncond_embeddings.repeat(1, num_videos_per_prompt, 1)
|
273 |
+
uncond_embeddings = uncond_embeddings.view(batch_size * num_videos_per_prompt, seq_len, -1)
|
274 |
+
|
275 |
+
# For classifier free guidance, we need to do two forward passes.
|
276 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
277 |
+
# to avoid doing two forward passes
|
278 |
+
if do_classifier_free_guidance == "text":
|
279 |
+
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
|
280 |
+
elif do_classifier_free_guidance == "both":
|
281 |
+
text_embeddings = torch.cat([uncond_embeddings, uncond_embeddings, text_embeddings])
|
282 |
+
|
283 |
+
return text_embeddings
|
284 |
+
|
285 |
+
def decode_latents(self, latents, first_frames=None):
|
286 |
+
video_length = latents.shape[2]
|
287 |
+
latents = 1 / self.vae.config.scaling_factor * latents
|
288 |
+
latents = rearrange(latents, "b c f h w -> (b f) c h w")
|
289 |
+
# video = self.vae.decode(latents).sample
|
290 |
+
video = []
|
291 |
+
for frame_idx in tqdm(range(latents.shape[0]), **self._progress_bar_config):
|
292 |
+
video.append(self.vae.decode(latents[frame_idx:frame_idx+1]).sample)
|
293 |
+
video = torch.cat(video)
|
294 |
+
video = rearrange(video, "(b f) c h w -> b c f h w", f=video_length)
|
295 |
+
|
296 |
+
if first_frames is not None:
|
297 |
+
first_frames = first_frames.unsqueeze(2)
|
298 |
+
video = torch.cat([first_frames, video], dim=2)
|
299 |
+
|
300 |
+
video = (video / 2 + 0.5).clamp(0, 1)
|
301 |
+
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16
|
302 |
+
video = video.cpu().float().numpy()
|
303 |
+
return video
|
304 |
+
|
305 |
+
def prepare_extra_step_kwargs(self, generator, eta):
|
306 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
307 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
308 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
309 |
+
# and should be between [0, 1]
|
310 |
+
|
311 |
+
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
312 |
+
extra_step_kwargs = {}
|
313 |
+
if accepts_eta:
|
314 |
+
extra_step_kwargs["eta"] = eta
|
315 |
+
|
316 |
+
# check if the scheduler accepts generator
|
317 |
+
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
318 |
+
if accepts_generator:
|
319 |
+
extra_step_kwargs["generator"] = generator
|
320 |
+
return extra_step_kwargs
|
321 |
+
|
322 |
+
def check_inputs(self, prompt, height, width, callback_steps, first_frame_paths=None):
|
323 |
+
if not isinstance(prompt, str) and not isinstance(prompt, list):
|
324 |
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
325 |
+
|
326 |
+
if first_frame_paths is not None and (not isinstance(prompt, str) and not isinstance(first_frame_paths, list)):
|
327 |
+
raise ValueError(f"`first_frame_paths` has to be of type `str` or `list` but is {type(first_frame_paths)}")
|
328 |
+
|
329 |
+
if height % 8 != 0 or width % 8 != 0:
|
330 |
+
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
331 |
+
|
332 |
+
if (callback_steps is None) or (
|
333 |
+
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
|
334 |
+
):
|
335 |
+
raise ValueError(
|
336 |
+
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
337 |
+
f" {type(callback_steps)}."
|
338 |
+
)
|
339 |
+
|
340 |
+
def prepare_latents(self, batch_size, num_channels_latents, video_length, height, width, dtype, device, generator, latents=None, noise_sampling_method="vanilla", noise_alpha=1.0):
|
341 |
+
shape = (batch_size, num_channels_latents, video_length, height // self.vae_scale_factor, width // self.vae_scale_factor)
|
342 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
343 |
+
raise ValueError(
|
344 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
345 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
346 |
+
)
|
347 |
+
if latents is None:
|
348 |
+
rand_device = "cpu" if device.type == "mps" else device
|
349 |
+
|
350 |
+
if isinstance(generator, list):
|
351 |
+
# shape = shape
|
352 |
+
shape = (1,) + shape[1:]
|
353 |
+
if noise_sampling_method == "vanilla":
|
354 |
+
latents = [
|
355 |
+
torch.randn(shape, generator=generator[i], device=rand_device, dtype=dtype)
|
356 |
+
for i in range(batch_size)
|
357 |
+
]
|
358 |
+
elif noise_sampling_method == "pyoco_mixed":
|
359 |
+
base_shape = (batch_size, num_channels_latents, 1, height // self.vae_scale_factor, width // self.vae_scale_factor)
|
360 |
+
latents = []
|
361 |
+
noise_alpha_squared = noise_alpha ** 2
|
362 |
+
for i in range(batch_size):
|
363 |
+
base_latent = torch.randn(base_shape, generator=generator[i], device=rand_device, dtype=dtype) * math.sqrt((noise_alpha_squared) / (1 + noise_alpha_squared))
|
364 |
+
ind_latent = torch.randn(shape, generator=generator[i], device=rand_device, dtype=dtype) * math.sqrt(1 / (1 + noise_alpha_squared))
|
365 |
+
latents.append(base_latent + ind_latent)
|
366 |
+
elif noise_sampling_method == "pyoco_progressive":
|
367 |
+
latents = []
|
368 |
+
noise_alpha_squared = noise_alpha ** 2
|
369 |
+
for i in range(batch_size):
|
370 |
+
latent = torch.randn(shape, generator=generator[i], device=rand_device, dtype=dtype)
|
371 |
+
ind_latent = torch.randn(shape, generator=generator[i], device=rand_device, dtype=dtype) * math.sqrt(1 / (1 + noise_alpha_squared))
|
372 |
+
for j in range(1, video_length):
|
373 |
+
latent[:, :, j, :, :] = latent[:, :, j - 1, :, :] * math.sqrt((noise_alpha_squared) / (1 + noise_alpha_squared)) + ind_latent[:, :, j, :, :]
|
374 |
+
latents.append(latent)
|
375 |
+
latents = torch.cat(latents, dim=0).to(device)
|
376 |
+
else:
|
377 |
+
if noise_sampling_method == "vanilla":
|
378 |
+
latents = torch.randn(shape, generator=generator, device=rand_device, dtype=dtype).to(device)
|
379 |
+
elif noise_sampling_method == "pyoco_mixed":
|
380 |
+
noise_alpha_squared = noise_alpha ** 2
|
381 |
+
base_shape = (batch_size, num_channels_latents, 1, height // self.vae_scale_factor, width // self.vae_scale_factor)
|
382 |
+
base_latents = torch.randn(base_shape, generator=generator, device=rand_device, dtype=dtype) * math.sqrt((noise_alpha_squared) / (1 + noise_alpha_squared))
|
383 |
+
ind_latents = torch.randn(shape, generator=generator, device=rand_device, dtype=dtype) * math.sqrt(1 / (1 + noise_alpha_squared))
|
384 |
+
latents = base_latents + ind_latents
|
385 |
+
elif noise_sampling_method == "pyoco_progressive":
|
386 |
+
noise_alpha_squared = noise_alpha ** 2
|
387 |
+
latents = torch.randn(shape, generator=generator, device=rand_device, dtype=dtype)
|
388 |
+
ind_latents = torch.randn(shape, generator=generator, device=rand_device, dtype=dtype) * math.sqrt(1 / (1 + noise_alpha_squared))
|
389 |
+
for j in range(1, video_length):
|
390 |
+
latents[:, :, j, :, :] = latents[:, :, j - 1, :, :] * math.sqrt((noise_alpha_squared) / (1 + noise_alpha_squared)) + ind_latents[:, :, j, :, :]
|
391 |
+
else:
|
392 |
+
if latents.shape != shape:
|
393 |
+
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}")
|
394 |
+
latents = latents.to(device)
|
395 |
+
|
396 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
397 |
+
latents = latents * self.scheduler.init_noise_sigma
|
398 |
+
return latents
|
399 |
+
|
400 |
+
@torch.no_grad()
|
401 |
+
def __call__(
|
402 |
+
self,
|
403 |
+
prompt: Union[str, List[str]],
|
404 |
+
video_length: Optional[int],
|
405 |
+
height: Optional[int] = None,
|
406 |
+
width: Optional[int] = None,
|
407 |
+
num_inference_steps: int = 50,
|
408 |
+
guidance_scale_txt: float = 7.5,
|
409 |
+
guidance_scale_img: float = 2.0,
|
410 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
411 |
+
num_videos_per_prompt: Optional[int] = 1,
|
412 |
+
eta: float = 0.0,
|
413 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
414 |
+
latents: Optional[torch.FloatTensor] = None,
|
415 |
+
output_type: Optional[str] = "tensor",
|
416 |
+
return_dict: bool = True,
|
417 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
418 |
+
callback_steps: Optional[int] = 1,
|
419 |
+
# additional
|
420 |
+
first_frame_paths: Optional[Union[str, List[str]]] = None,
|
421 |
+
first_frames: Optional[torch.FloatTensor] = None,
|
422 |
+
noise_sampling_method: str = "vanilla",
|
423 |
+
noise_alpha: float = 1.0,
|
424 |
+
guidance_rescale: float = 0.0,
|
425 |
+
frame_stride: Optional[int] = None,
|
426 |
+
autoregress_steps: int = 3,
|
427 |
+
use_frameinit: bool = False,
|
428 |
+
frameinit_noise_level: int = 999,
|
429 |
+
**kwargs,
|
430 |
+
):
|
431 |
+
if first_frame_paths is not None and first_frames is not None:
|
432 |
+
raise ValueError("Only one of `first_frame_paths` and `first_frames` can be passed.")
|
433 |
+
# Default height and width to unet
|
434 |
+
height = height or self.unet.config.sample_size * self.vae_scale_factor
|
435 |
+
width = width or self.unet.config.sample_size * self.vae_scale_factor
|
436 |
+
|
437 |
+
# Check inputs. Raise error if not correct
|
438 |
+
self.check_inputs(prompt, height, width, callback_steps, first_frame_paths)
|
439 |
+
|
440 |
+
# Define call parameters
|
441 |
+
# batch_size = 1 if isinstance(prompt, str) else len(prompt)
|
442 |
+
batch_size = 1
|
443 |
+
if latents is not None:
|
444 |
+
batch_size = latents.shape[0]
|
445 |
+
if isinstance(prompt, list):
|
446 |
+
batch_size = len(prompt)
|
447 |
+
first_frame_input = first_frame_paths if first_frame_paths is not None else first_frames
|
448 |
+
if first_frame_input is not None:
|
449 |
+
assert len(prompt) == len(first_frame_input), "prompt and first_frame_paths should have the same length"
|
450 |
+
|
451 |
+
device = self._execution_device
|
452 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
453 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
454 |
+
# corresponds to doing no classifier free guidance.
|
455 |
+
do_classifier_free_guidance = None
|
456 |
+
# two guidance mode: text and text+image
|
457 |
+
if guidance_scale_txt > 1.0:
|
458 |
+
do_classifier_free_guidance = "text"
|
459 |
+
if guidance_scale_img > 1.0:
|
460 |
+
do_classifier_free_guidance = "both"
|
461 |
+
|
462 |
+
# Encode input prompt
|
463 |
+
prompt = prompt if isinstance(prompt, list) else [prompt] * batch_size
|
464 |
+
if negative_prompt is not None:
|
465 |
+
negative_prompt = negative_prompt if isinstance(negative_prompt, list) else [negative_prompt] * batch_size
|
466 |
+
text_embeddings = self._encode_prompt(
|
467 |
+
prompt, device, num_videos_per_prompt, do_classifier_free_guidance, negative_prompt
|
468 |
+
)
|
469 |
+
|
470 |
+
# Encode input first frame
|
471 |
+
first_frame_latents = None
|
472 |
+
if first_frame_paths is not None:
|
473 |
+
first_frame_paths = first_frame_paths if isinstance(first_frame_paths, list) else [first_frame_paths] * batch_size
|
474 |
+
img_transform = T.Compose([
|
475 |
+
T.ToTensor(),
|
476 |
+
T.Resize(height, antialias=None),
|
477 |
+
T.CenterCrop((height, width)),
|
478 |
+
T.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True),
|
479 |
+
])
|
480 |
+
first_frames = []
|
481 |
+
for first_frame_path in first_frame_paths:
|
482 |
+
first_frame = Image.open(first_frame_path).convert('RGB')
|
483 |
+
first_frame = img_transform(first_frame).unsqueeze(0)
|
484 |
+
first_frames.append(first_frame)
|
485 |
+
first_frames = torch.cat(first_frames, dim=0)
|
486 |
+
if first_frames is not None:
|
487 |
+
first_frames = first_frames.to(device, dtype=self.vae.dtype)
|
488 |
+
first_frame_latents = self.vae.encode(first_frames).latent_dist
|
489 |
+
first_frame_latents = first_frame_latents.sample()
|
490 |
+
first_frame_latents = first_frame_latents * self.vae.config.scaling_factor # b, c, h, w
|
491 |
+
first_frame_latents = repeat(first_frame_latents, "b c h w -> (b n) c h w", n=num_videos_per_prompt)
|
492 |
+
first_frames = repeat(first_frames, "b c h w -> (b n) c h w", n=num_videos_per_prompt)
|
493 |
+
|
494 |
+
full_video_latent = torch.zeros(batch_size * num_videos_per_prompt, self.unet.config.in_channels, video_length * autoregress_steps - autoregress_steps + 1, height // self.vae_scale_factor, width // self.vae_scale_factor, device=device, dtype=self.vae.dtype)
|
495 |
+
|
496 |
+
start_idx = 0
|
497 |
+
for ar_step in range(autoregress_steps):
|
498 |
+
# Prepare timesteps
|
499 |
+
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
500 |
+
timesteps = self.scheduler.timesteps
|
501 |
+
|
502 |
+
# Prepare latent variables
|
503 |
+
num_channels_latents = self.unet.config.in_channels
|
504 |
+
latents = self.prepare_latents(
|
505 |
+
batch_size * num_videos_per_prompt,
|
506 |
+
num_channels_latents,
|
507 |
+
video_length,
|
508 |
+
height,
|
509 |
+
width,
|
510 |
+
text_embeddings.dtype,
|
511 |
+
device,
|
512 |
+
generator,
|
513 |
+
latents,
|
514 |
+
noise_sampling_method,
|
515 |
+
noise_alpha,
|
516 |
+
)
|
517 |
+
latents_dtype = latents.dtype
|
518 |
+
|
519 |
+
if use_frameinit:
|
520 |
+
current_diffuse_timestep = frameinit_noise_level # diffuse to noise level
|
521 |
+
diffuse_timesteps = torch.full((batch_size,),int(current_diffuse_timestep))
|
522 |
+
diffuse_timesteps = diffuse_timesteps.long()
|
523 |
+
first_frames_static_vid = repeat(first_frame_latents, "b c h w -> b c t h w", t=video_length)
|
524 |
+
z_T = self.scheduler.add_noise(
|
525 |
+
original_samples=first_frames_static_vid.to(device),
|
526 |
+
noise=latents.to(device),
|
527 |
+
timesteps=diffuse_timesteps.to(device)
|
528 |
+
)
|
529 |
+
latents = freq_mix_3d(z_T.to(dtype=torch.float32), latents, LPF=self.freq_filter)
|
530 |
+
latents = latents.to(dtype=latents_dtype)
|
531 |
+
|
532 |
+
if first_frame_latents is not None:
|
533 |
+
first_frame_noisy_latent = latents[:, :, 0, :, :]
|
534 |
+
latents = latents[:, :, 1:, :, :]
|
535 |
+
|
536 |
+
# Prepare extra step kwargs.
|
537 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
538 |
+
|
539 |
+
# Denoising loop
|
540 |
+
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
541 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
542 |
+
for i, t in enumerate(timesteps):
|
543 |
+
# expand the latents if we are doing classifier free guidance
|
544 |
+
if do_classifier_free_guidance is None:
|
545 |
+
latent_model_input = latents
|
546 |
+
elif do_classifier_free_guidance == "text":
|
547 |
+
latent_model_input = torch.cat([latents] * 2)
|
548 |
+
elif do_classifier_free_guidance == "both":
|
549 |
+
latent_model_input = torch.cat([latents] * 3)
|
550 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
551 |
+
if first_frame_latents is not None:
|
552 |
+
if do_classifier_free_guidance is None:
|
553 |
+
first_frame_latents_input = first_frame_latents
|
554 |
+
elif do_classifier_free_guidance == "text":
|
555 |
+
first_frame_latents_input = torch.cat([first_frame_latents] * 2)
|
556 |
+
elif do_classifier_free_guidance == "both":
|
557 |
+
first_frame_latents_input = torch.cat([first_frame_noisy_latent, first_frame_latents, first_frame_latents])
|
558 |
+
|
559 |
+
first_frame_latents_input = first_frame_latents_input.unsqueeze(2)
|
560 |
+
|
561 |
+
# predict the noise residual
|
562 |
+
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings, first_frame_latents=first_frame_latents_input, frame_stride=frame_stride).sample.to(dtype=latents_dtype)
|
563 |
+
else:
|
564 |
+
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample.to(dtype=latents_dtype)
|
565 |
+
# noise_pred = []
|
566 |
+
# import pdb
|
567 |
+
# pdb.set_trace()
|
568 |
+
# for batch_idx in range(latent_model_input.shape[0]):
|
569 |
+
# noise_pred_single = self.unet(latent_model_input[batch_idx:batch_idx+1], t, encoder_hidden_states=text_embeddings[batch_idx:batch_idx+1]).sample.to(dtype=latents_dtype)
|
570 |
+
# noise_pred.append(noise_pred_single)
|
571 |
+
# noise_pred = torch.cat(noise_pred)
|
572 |
+
|
573 |
+
# perform guidance
|
574 |
+
if do_classifier_free_guidance:
|
575 |
+
if do_classifier_free_guidance == "text":
|
576 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
577 |
+
noise_pred = noise_pred_uncond + guidance_scale_txt * (noise_pred_text - noise_pred_uncond)
|
578 |
+
elif do_classifier_free_guidance == "both":
|
579 |
+
noise_pred_uncond, noise_pred_img, noise_pred_both = noise_pred.chunk(3)
|
580 |
+
noise_pred = noise_pred_uncond + guidance_scale_img * (noise_pred_img - noise_pred_uncond) + guidance_scale_txt * (noise_pred_both - noise_pred_img)
|
581 |
+
|
582 |
+
if do_classifier_free_guidance and guidance_rescale > 0.0:
|
583 |
+
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
|
584 |
+
# currently only support text guidance
|
585 |
+
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
|
586 |
+
|
587 |
+
# compute the previous noisy sample x_t -> x_t-1
|
588 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
|
589 |
+
|
590 |
+
# call the callback, if provided
|
591 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
592 |
+
progress_bar.update()
|
593 |
+
if callback is not None and i % callback_steps == 0:
|
594 |
+
callback(i, t, latents)
|
595 |
+
|
596 |
+
# Post-processing
|
597 |
+
|
598 |
+
latents = torch.cat([first_frame_latents.unsqueeze(2), latents], dim=2)
|
599 |
+
first_frame_latents = latents[:, :, -1, :, :]
|
600 |
+
full_video_latent[:, :, start_idx:start_idx + video_length, :, :] = latents
|
601 |
+
|
602 |
+
latents = None
|
603 |
+
start_idx += (video_length - 1)
|
604 |
+
|
605 |
+
# video = self.decode_latents(latents, first_frames)
|
606 |
+
video = self.decode_latents(full_video_latent)
|
607 |
+
|
608 |
+
# Convert to tensor
|
609 |
+
if output_type == "tensor":
|
610 |
+
video = torch.from_numpy(video)
|
611 |
+
|
612 |
+
if not return_dict:
|
613 |
+
return video
|
614 |
+
|
615 |
+
return AnimationPipelineOutput(videos=video)
|
consisti2v/pipelines/pipeline_conditional_animation.py
ADDED
@@ -0,0 +1,695 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adapted from https://github.com/showlab/Tune-A-Video/blob/main/tuneavideo/pipelines/pipeline_tuneavideo.py
|
2 |
+
|
3 |
+
import inspect
|
4 |
+
from typing import Callable, List, Optional, Union
|
5 |
+
from dataclasses import dataclass
|
6 |
+
|
7 |
+
import math
|
8 |
+
import numpy as np
|
9 |
+
import torch
|
10 |
+
from tqdm import tqdm
|
11 |
+
|
12 |
+
from torchvision import transforms as T
|
13 |
+
from torchvision.transforms import functional as F
|
14 |
+
from PIL import Image
|
15 |
+
|
16 |
+
from diffusers.utils import is_accelerate_available
|
17 |
+
from packaging import version
|
18 |
+
from transformers import CLIPTextModel, CLIPTokenizer
|
19 |
+
|
20 |
+
from diffusers.configuration_utils import FrozenDict
|
21 |
+
from diffusers.models import AutoencoderKL
|
22 |
+
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
|
23 |
+
from diffusers.schedulers import (
|
24 |
+
DDIMScheduler,
|
25 |
+
DPMSolverMultistepScheduler,
|
26 |
+
EulerAncestralDiscreteScheduler,
|
27 |
+
EulerDiscreteScheduler,
|
28 |
+
LMSDiscreteScheduler,
|
29 |
+
PNDMScheduler,
|
30 |
+
)
|
31 |
+
from diffusers.utils import deprecate, logging, BaseOutput
|
32 |
+
|
33 |
+
from einops import rearrange, repeat
|
34 |
+
|
35 |
+
from ..models.videoldm_unet import VideoLDMUNet3DConditionModel
|
36 |
+
|
37 |
+
from ..utils.frameinit_utils import get_freq_filter, freq_mix_3d
|
38 |
+
|
39 |
+
|
40 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
41 |
+
|
42 |
+
# copied from https://github.com/huggingface/diffusers/blob/v0.23.0/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py#L59C1-L70C21
|
43 |
+
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
|
44 |
+
"""
|
45 |
+
Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
|
46 |
+
Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
|
47 |
+
"""
|
48 |
+
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
|
49 |
+
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
|
50 |
+
# rescale the results from guidance (fixes overexposure)
|
51 |
+
noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
|
52 |
+
# mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
|
53 |
+
noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
|
54 |
+
return noise_cfg
|
55 |
+
|
56 |
+
def pan_right(image, num_frames=16, crop_width=256):
|
57 |
+
frames = []
|
58 |
+
height, width = image.shape[-2:]
|
59 |
+
|
60 |
+
for i in range(num_frames):
|
61 |
+
# Calculate the start position of the crop
|
62 |
+
start_x = int((width - crop_width) * (i / num_frames))
|
63 |
+
crop = F.crop(image, 0, start_x, height, crop_width)
|
64 |
+
frames.append(crop.unsqueeze(0))
|
65 |
+
|
66 |
+
return torch.cat(frames, dim=0)
|
67 |
+
|
68 |
+
|
69 |
+
def pan_left(image, num_frames=16, crop_width=256):
|
70 |
+
frames = []
|
71 |
+
height, width = image.shape[-2:]
|
72 |
+
|
73 |
+
for i in range(num_frames):
|
74 |
+
# Start position moves from right to left
|
75 |
+
start_x = int((width - crop_width) * (1 - (i / num_frames)))
|
76 |
+
crop = F.crop(image, 0, start_x, height, crop_width)
|
77 |
+
frames.append(crop.unsqueeze(0))
|
78 |
+
|
79 |
+
return torch.cat(frames, dim=0)
|
80 |
+
|
81 |
+
|
82 |
+
def zoom_in(image, num_frames=16, crop_width=256, ratio=1.5):
|
83 |
+
frames = []
|
84 |
+
height, width = image.shape[-2:]
|
85 |
+
max_crop_size = min(width, height)
|
86 |
+
|
87 |
+
for i in range(num_frames):
|
88 |
+
# Calculate the size of the crop
|
89 |
+
crop_size = max_crop_size - int((max_crop_size - max_crop_size // ratio) * (i / num_frames))
|
90 |
+
start_x = (width - crop_size) // 2
|
91 |
+
start_y = (height - crop_size) // 2
|
92 |
+
crop = F.crop(image, start_y, start_x, crop_size, crop_size)
|
93 |
+
resized_crop = F.resize(crop, (crop_width, crop_width), antialias=None) # Resize back to original size
|
94 |
+
frames.append(resized_crop.unsqueeze(0))
|
95 |
+
|
96 |
+
return torch.cat(frames, dim=0)
|
97 |
+
|
98 |
+
|
99 |
+
def zoom_out(image, num_frames=16, crop_width=256, ratio=1.5):
|
100 |
+
frames = []
|
101 |
+
height, width = image.shape[-2:]
|
102 |
+
min_crop_size = min(width, height) // ratio # Starting from a quarter of the size
|
103 |
+
|
104 |
+
for i in range(num_frames):
|
105 |
+
# Calculate the size of the crop
|
106 |
+
crop_size = min_crop_size + int((min(width, height) - min_crop_size) * (i / num_frames))
|
107 |
+
start_x = (width - crop_size) // 2
|
108 |
+
start_y = (height - crop_size) // 2
|
109 |
+
crop = F.crop(image, start_y, start_x, crop_size, crop_size)
|
110 |
+
resized_crop = F.resize(crop, (crop_width, crop_width), antialias=None) # Resize back to original size
|
111 |
+
frames.append(resized_crop.unsqueeze(0))
|
112 |
+
|
113 |
+
return torch.cat(frames, dim=0)
|
114 |
+
|
115 |
+
|
116 |
+
@dataclass
|
117 |
+
class AnimationPipelineOutput(BaseOutput):
|
118 |
+
videos: Union[torch.Tensor, np.ndarray]
|
119 |
+
|
120 |
+
|
121 |
+
class ConditionalAnimationPipeline(DiffusionPipeline):
|
122 |
+
_optional_components = []
|
123 |
+
|
124 |
+
def __init__(
|
125 |
+
self,
|
126 |
+
vae: AutoencoderKL,
|
127 |
+
text_encoder: CLIPTextModel,
|
128 |
+
tokenizer: CLIPTokenizer,
|
129 |
+
unet: VideoLDMUNet3DConditionModel,
|
130 |
+
scheduler: Union[
|
131 |
+
DDIMScheduler,
|
132 |
+
PNDMScheduler,
|
133 |
+
LMSDiscreteScheduler,
|
134 |
+
EulerDiscreteScheduler,
|
135 |
+
EulerAncestralDiscreteScheduler,
|
136 |
+
DPMSolverMultistepScheduler,
|
137 |
+
],
|
138 |
+
):
|
139 |
+
super().__init__()
|
140 |
+
|
141 |
+
if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
|
142 |
+
deprecation_message = (
|
143 |
+
f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
|
144 |
+
f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
|
145 |
+
"to update the config accordingly as leaving `steps_offset` might led to incorrect results"
|
146 |
+
" in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
|
147 |
+
" it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
|
148 |
+
" file"
|
149 |
+
)
|
150 |
+
deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False)
|
151 |
+
new_config = dict(scheduler.config)
|
152 |
+
new_config["steps_offset"] = 1
|
153 |
+
scheduler._internal_dict = FrozenDict(new_config)
|
154 |
+
|
155 |
+
if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True:
|
156 |
+
deprecation_message = (
|
157 |
+
f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`."
|
158 |
+
" `clip_sample` should be set to False in the configuration file. Please make sure to update the"
|
159 |
+
" config accordingly as not setting `clip_sample` in the config might lead to incorrect results in"
|
160 |
+
" future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very"
|
161 |
+
" nice if you could open a Pull request for the `scheduler/scheduler_config.json` file"
|
162 |
+
)
|
163 |
+
deprecate("clip_sample not set", "1.0.0", deprecation_message, standard_warn=False)
|
164 |
+
new_config = dict(scheduler.config)
|
165 |
+
new_config["clip_sample"] = False
|
166 |
+
scheduler._internal_dict = FrozenDict(new_config)
|
167 |
+
|
168 |
+
is_unet_version_less_0_9_0 = hasattr(unet.config, "_diffusers_version") and version.parse(
|
169 |
+
version.parse(unet.config._diffusers_version).base_version
|
170 |
+
) < version.parse("0.9.0.dev0")
|
171 |
+
is_unet_sample_size_less_64 = hasattr(unet.config, "sample_size") and unet.config.sample_size < 64
|
172 |
+
if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64:
|
173 |
+
deprecation_message = (
|
174 |
+
"The configuration file of the unet has set the default `sample_size` to smaller than"
|
175 |
+
" 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the"
|
176 |
+
" following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
|
177 |
+
" CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
|
178 |
+
" \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
|
179 |
+
" configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
|
180 |
+
" in the config might lead to incorrect results in future versions. If you have downloaded this"
|
181 |
+
" checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
|
182 |
+
" the `unet/config.json` file"
|
183 |
+
)
|
184 |
+
deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False)
|
185 |
+
new_config = dict(unet.config)
|
186 |
+
new_config["sample_size"] = 64
|
187 |
+
unet._internal_dict = FrozenDict(new_config)
|
188 |
+
|
189 |
+
self.register_modules(
|
190 |
+
vae=vae,
|
191 |
+
text_encoder=text_encoder,
|
192 |
+
tokenizer=tokenizer,
|
193 |
+
unet=unet,
|
194 |
+
scheduler=scheduler,
|
195 |
+
)
|
196 |
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
197 |
+
|
198 |
+
self.freq_filter = None
|
199 |
+
|
200 |
+
@torch.no_grad()
|
201 |
+
def init_filter(self, video_length, height, width, filter_params):
|
202 |
+
# initialize frequency filter for noise reinitialization
|
203 |
+
batch_size = 1
|
204 |
+
num_channels_latents = self.unet.config.in_channels
|
205 |
+
filter_shape = [
|
206 |
+
batch_size,
|
207 |
+
num_channels_latents,
|
208 |
+
video_length,
|
209 |
+
height // self.vae_scale_factor,
|
210 |
+
width // self.vae_scale_factor
|
211 |
+
]
|
212 |
+
# self.freq_filter = get_freq_filter(filter_shape, device=self._execution_device, params=filter_params)
|
213 |
+
self.freq_filter = get_freq_filter(
|
214 |
+
filter_shape,
|
215 |
+
device=self._execution_device,
|
216 |
+
filter_type=filter_params.method,
|
217 |
+
n=filter_params.n if filter_params.method=="butterworth" else None,
|
218 |
+
d_s=filter_params.d_s,
|
219 |
+
d_t=filter_params.d_t
|
220 |
+
)
|
221 |
+
|
222 |
+
def enable_vae_slicing(self):
|
223 |
+
self.vae.enable_slicing()
|
224 |
+
|
225 |
+
def disable_vae_slicing(self):
|
226 |
+
self.vae.disable_slicing()
|
227 |
+
|
228 |
+
def enable_sequential_cpu_offload(self, gpu_id=0):
|
229 |
+
if is_accelerate_available():
|
230 |
+
from accelerate import cpu_offload
|
231 |
+
else:
|
232 |
+
raise ImportError("Please install accelerate via `pip install accelerate`")
|
233 |
+
|
234 |
+
device = torch.device(f"cuda:{gpu_id}")
|
235 |
+
|
236 |
+
for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae]:
|
237 |
+
if cpu_offloaded_model is not None:
|
238 |
+
cpu_offload(cpu_offloaded_model, device)
|
239 |
+
|
240 |
+
|
241 |
+
@property
|
242 |
+
def _execution_device(self):
|
243 |
+
if self.device != torch.device("meta") or not hasattr(self.unet, "_hf_hook"):
|
244 |
+
return self.device
|
245 |
+
for module in self.unet.modules():
|
246 |
+
if (
|
247 |
+
hasattr(module, "_hf_hook")
|
248 |
+
and hasattr(module._hf_hook, "execution_device")
|
249 |
+
and module._hf_hook.execution_device is not None
|
250 |
+
):
|
251 |
+
return torch.device(module._hf_hook.execution_device)
|
252 |
+
return self.device
|
253 |
+
|
254 |
+
def _encode_prompt(self, prompt, device, num_videos_per_prompt, do_classifier_free_guidance, negative_prompt):
|
255 |
+
batch_size = len(prompt) if isinstance(prompt, list) else 1
|
256 |
+
|
257 |
+
text_inputs = self.tokenizer(
|
258 |
+
prompt,
|
259 |
+
padding="max_length",
|
260 |
+
max_length=self.tokenizer.model_max_length,
|
261 |
+
truncation=True,
|
262 |
+
return_tensors="pt",
|
263 |
+
)
|
264 |
+
text_input_ids = text_inputs.input_ids
|
265 |
+
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
266 |
+
|
267 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
|
268 |
+
removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1])
|
269 |
+
logger.warning(
|
270 |
+
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
271 |
+
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
|
272 |
+
)
|
273 |
+
|
274 |
+
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
|
275 |
+
attention_mask = text_inputs.attention_mask.to(device)
|
276 |
+
else:
|
277 |
+
attention_mask = None
|
278 |
+
|
279 |
+
text_embeddings = self.text_encoder(
|
280 |
+
text_input_ids.to(device),
|
281 |
+
attention_mask=attention_mask,
|
282 |
+
)
|
283 |
+
text_embeddings = text_embeddings[0]
|
284 |
+
|
285 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
286 |
+
bs_embed, seq_len, _ = text_embeddings.shape
|
287 |
+
text_embeddings = text_embeddings.repeat(1, num_videos_per_prompt, 1)
|
288 |
+
text_embeddings = text_embeddings.view(bs_embed * num_videos_per_prompt, seq_len, -1)
|
289 |
+
|
290 |
+
# get unconditional embeddings for classifier free guidance
|
291 |
+
if do_classifier_free_guidance is not None:
|
292 |
+
uncond_tokens: List[str]
|
293 |
+
if negative_prompt is None:
|
294 |
+
uncond_tokens = [""] * batch_size
|
295 |
+
elif type(prompt) is not type(negative_prompt):
|
296 |
+
raise TypeError(
|
297 |
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
298 |
+
f" {type(prompt)}."
|
299 |
+
)
|
300 |
+
elif isinstance(negative_prompt, str):
|
301 |
+
uncond_tokens = [negative_prompt]
|
302 |
+
elif batch_size != len(negative_prompt):
|
303 |
+
raise ValueError(
|
304 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
305 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
306 |
+
" the batch size of `prompt`."
|
307 |
+
)
|
308 |
+
else:
|
309 |
+
uncond_tokens = negative_prompt
|
310 |
+
|
311 |
+
max_length = text_input_ids.shape[-1]
|
312 |
+
uncond_input = self.tokenizer(
|
313 |
+
uncond_tokens,
|
314 |
+
padding="max_length",
|
315 |
+
max_length=max_length,
|
316 |
+
truncation=True,
|
317 |
+
return_tensors="pt",
|
318 |
+
)
|
319 |
+
|
320 |
+
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
|
321 |
+
attention_mask = uncond_input.attention_mask.to(device)
|
322 |
+
else:
|
323 |
+
attention_mask = None
|
324 |
+
|
325 |
+
uncond_embeddings = self.text_encoder(
|
326 |
+
uncond_input.input_ids.to(device),
|
327 |
+
attention_mask=attention_mask,
|
328 |
+
)
|
329 |
+
uncond_embeddings = uncond_embeddings[0]
|
330 |
+
|
331 |
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
332 |
+
seq_len = uncond_embeddings.shape[1]
|
333 |
+
uncond_embeddings = uncond_embeddings.repeat(1, num_videos_per_prompt, 1)
|
334 |
+
uncond_embeddings = uncond_embeddings.view(batch_size * num_videos_per_prompt, seq_len, -1)
|
335 |
+
|
336 |
+
# For classifier free guidance, we need to do two forward passes.
|
337 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
338 |
+
# to avoid doing two forward passes
|
339 |
+
if do_classifier_free_guidance == "text":
|
340 |
+
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
|
341 |
+
elif do_classifier_free_guidance == "both":
|
342 |
+
text_embeddings = torch.cat([uncond_embeddings, uncond_embeddings, text_embeddings])
|
343 |
+
|
344 |
+
return text_embeddings
|
345 |
+
|
346 |
+
def decode_latents(self, latents, first_frames=None):
|
347 |
+
video_length = latents.shape[2]
|
348 |
+
latents = 1 / self.vae.config.scaling_factor * latents
|
349 |
+
latents = rearrange(latents, "b c f h w -> (b f) c h w")
|
350 |
+
# video = self.vae.decode(latents).sample
|
351 |
+
video = []
|
352 |
+
for frame_idx in tqdm(range(latents.shape[0]), **self._progress_bar_config):
|
353 |
+
video.append(self.vae.decode(latents[frame_idx:frame_idx+1]).sample)
|
354 |
+
video = torch.cat(video)
|
355 |
+
video = rearrange(video, "(b f) c h w -> b c f h w", f=video_length)
|
356 |
+
|
357 |
+
if first_frames is not None:
|
358 |
+
first_frames = first_frames.unsqueeze(2)
|
359 |
+
video = torch.cat([first_frames, video], dim=2)
|
360 |
+
|
361 |
+
video = (video / 2 + 0.5).clamp(0, 1)
|
362 |
+
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16
|
363 |
+
video = video.cpu().float().numpy()
|
364 |
+
return video
|
365 |
+
|
366 |
+
def prepare_extra_step_kwargs(self, generator, eta):
|
367 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
368 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
369 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
370 |
+
# and should be between [0, 1]
|
371 |
+
|
372 |
+
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
373 |
+
extra_step_kwargs = {}
|
374 |
+
if accepts_eta:
|
375 |
+
extra_step_kwargs["eta"] = eta
|
376 |
+
|
377 |
+
# check if the scheduler accepts generator
|
378 |
+
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
379 |
+
if accepts_generator:
|
380 |
+
extra_step_kwargs["generator"] = generator
|
381 |
+
return extra_step_kwargs
|
382 |
+
|
383 |
+
def check_inputs(self, prompt, height, width, callback_steps, first_frame_paths=None):
|
384 |
+
if not isinstance(prompt, str) and not isinstance(prompt, list):
|
385 |
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
386 |
+
|
387 |
+
if first_frame_paths is not None and (not isinstance(prompt, str) and not isinstance(first_frame_paths, list)):
|
388 |
+
raise ValueError(f"`first_frame_paths` has to be of type `str` or `list` but is {type(first_frame_paths)}")
|
389 |
+
|
390 |
+
if height % 8 != 0 or width % 8 != 0:
|
391 |
+
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
392 |
+
|
393 |
+
if (callback_steps is None) or (
|
394 |
+
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
|
395 |
+
):
|
396 |
+
raise ValueError(
|
397 |
+
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
398 |
+
f" {type(callback_steps)}."
|
399 |
+
)
|
400 |
+
|
401 |
+
def prepare_latents(self, batch_size, num_channels_latents, video_length, height, width, dtype, device, generator, latents=None, noise_sampling_method="vanilla", noise_alpha=1.0):
|
402 |
+
shape = (batch_size, num_channels_latents, video_length, height // self.vae_scale_factor, width // self.vae_scale_factor)
|
403 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
404 |
+
raise ValueError(
|
405 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
406 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
407 |
+
)
|
408 |
+
if latents is None:
|
409 |
+
rand_device = "cpu" if device.type == "mps" else device
|
410 |
+
|
411 |
+
if isinstance(generator, list):
|
412 |
+
# shape = shape
|
413 |
+
shape = (1,) + shape[1:]
|
414 |
+
if noise_sampling_method == "vanilla":
|
415 |
+
latents = [
|
416 |
+
torch.randn(shape, generator=generator[i], device=rand_device, dtype=dtype)
|
417 |
+
for i in range(batch_size)
|
418 |
+
]
|
419 |
+
elif noise_sampling_method == "pyoco_mixed":
|
420 |
+
base_shape = (batch_size, num_channels_latents, 1, height // self.vae_scale_factor, width // self.vae_scale_factor)
|
421 |
+
latents = []
|
422 |
+
noise_alpha_squared = noise_alpha ** 2
|
423 |
+
for i in range(batch_size):
|
424 |
+
base_latent = torch.randn(base_shape, generator=generator[i], device=rand_device, dtype=dtype) * math.sqrt((noise_alpha_squared) / (1 + noise_alpha_squared))
|
425 |
+
ind_latent = torch.randn(shape, generator=generator[i], device=rand_device, dtype=dtype) * math.sqrt(1 / (1 + noise_alpha_squared))
|
426 |
+
latents.append(base_latent + ind_latent)
|
427 |
+
elif noise_sampling_method == "pyoco_progressive":
|
428 |
+
latents = []
|
429 |
+
noise_alpha_squared = noise_alpha ** 2
|
430 |
+
for i in range(batch_size):
|
431 |
+
latent = torch.randn(shape, generator=generator[i], device=rand_device, dtype=dtype)
|
432 |
+
ind_latent = torch.randn(shape, generator=generator[i], device=rand_device, dtype=dtype) * math.sqrt(1 / (1 + noise_alpha_squared))
|
433 |
+
for j in range(1, video_length):
|
434 |
+
latent[:, :, j, :, :] = latent[:, :, j - 1, :, :] * math.sqrt((noise_alpha_squared) / (1 + noise_alpha_squared)) + ind_latent[:, :, j, :, :]
|
435 |
+
latents.append(latent)
|
436 |
+
latents = torch.cat(latents, dim=0).to(device)
|
437 |
+
else:
|
438 |
+
if noise_sampling_method == "vanilla":
|
439 |
+
latents = torch.randn(shape, generator=generator, device=rand_device, dtype=dtype).to(device)
|
440 |
+
elif noise_sampling_method == "pyoco_mixed":
|
441 |
+
noise_alpha_squared = noise_alpha ** 2
|
442 |
+
base_shape = (batch_size, num_channels_latents, 1, height // self.vae_scale_factor, width // self.vae_scale_factor)
|
443 |
+
base_latents = torch.randn(base_shape, generator=generator, device=rand_device, dtype=dtype) * math.sqrt((noise_alpha_squared) / (1 + noise_alpha_squared))
|
444 |
+
ind_latents = torch.randn(shape, generator=generator, device=rand_device, dtype=dtype) * math.sqrt(1 / (1 + noise_alpha_squared))
|
445 |
+
latents = base_latents + ind_latents
|
446 |
+
elif noise_sampling_method == "pyoco_progressive":
|
447 |
+
noise_alpha_squared = noise_alpha ** 2
|
448 |
+
latents = torch.randn(shape, generator=generator, device=rand_device, dtype=dtype)
|
449 |
+
ind_latents = torch.randn(shape, generator=generator, device=rand_device, dtype=dtype) * math.sqrt(1 / (1 + noise_alpha_squared))
|
450 |
+
for j in range(1, video_length):
|
451 |
+
latents[:, :, j, :, :] = latents[:, :, j - 1, :, :] * math.sqrt((noise_alpha_squared) / (1 + noise_alpha_squared)) + ind_latents[:, :, j, :, :]
|
452 |
+
else:
|
453 |
+
if latents.shape != shape:
|
454 |
+
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}")
|
455 |
+
latents = latents.to(device)
|
456 |
+
|
457 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
458 |
+
latents = latents * self.scheduler.init_noise_sigma
|
459 |
+
return latents
|
460 |
+
|
461 |
+
@torch.no_grad()
|
462 |
+
def __call__(
|
463 |
+
self,
|
464 |
+
prompt: Union[str, List[str]],
|
465 |
+
video_length: Optional[int],
|
466 |
+
height: Optional[int] = None,
|
467 |
+
width: Optional[int] = None,
|
468 |
+
num_inference_steps: int = 50,
|
469 |
+
guidance_scale_txt: float = 7.5,
|
470 |
+
guidance_scale_img: float = 2.0,
|
471 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
472 |
+
num_videos_per_prompt: Optional[int] = 1,
|
473 |
+
eta: float = 0.0,
|
474 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
475 |
+
latents: Optional[torch.FloatTensor] = None,
|
476 |
+
output_type: Optional[str] = "tensor",
|
477 |
+
return_dict: bool = True,
|
478 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
479 |
+
callback_steps: Optional[int] = 1,
|
480 |
+
# additional
|
481 |
+
first_frame_paths: Optional[Union[str, List[str]]] = None,
|
482 |
+
first_frames: Optional[torch.FloatTensor] = None,
|
483 |
+
noise_sampling_method: str = "vanilla",
|
484 |
+
noise_alpha: float = 1.0,
|
485 |
+
guidance_rescale: float = 0.0,
|
486 |
+
frame_stride: Optional[int] = None,
|
487 |
+
use_frameinit: bool = False,
|
488 |
+
frameinit_noise_level: int = 999,
|
489 |
+
camera_motion: str = None,
|
490 |
+
**kwargs,
|
491 |
+
):
|
492 |
+
if first_frame_paths is not None and first_frames is not None:
|
493 |
+
raise ValueError("Only one of `first_frame_paths` and `first_frames` can be passed.")
|
494 |
+
# Default height and width to unet
|
495 |
+
height = height or self.unet.config.sample_size * self.vae_scale_factor
|
496 |
+
width = width or self.unet.config.sample_size * self.vae_scale_factor
|
497 |
+
|
498 |
+
# Check inputs. Raise error if not correct
|
499 |
+
self.check_inputs(prompt, height, width, callback_steps, first_frame_paths)
|
500 |
+
|
501 |
+
# Define call parameters
|
502 |
+
# batch_size = 1 if isinstance(prompt, str) else len(prompt)
|
503 |
+
batch_size = 1
|
504 |
+
if latents is not None:
|
505 |
+
batch_size = latents.shape[0]
|
506 |
+
if isinstance(prompt, list):
|
507 |
+
batch_size = len(prompt)
|
508 |
+
first_frame_input = first_frame_paths if first_frame_paths is not None else first_frames
|
509 |
+
if first_frame_input is not None:
|
510 |
+
assert len(prompt) == len(first_frame_input), "prompt and first_frame_paths should have the same length"
|
511 |
+
|
512 |
+
device = self._execution_device
|
513 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
514 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
515 |
+
# corresponds to doing no classifier free guidance.
|
516 |
+
do_classifier_free_guidance = None
|
517 |
+
# two guidance mode: text and text+image
|
518 |
+
if guidance_scale_txt > 1.0:
|
519 |
+
do_classifier_free_guidance = "text"
|
520 |
+
if guidance_scale_img > 1.0:
|
521 |
+
do_classifier_free_guidance = "both"
|
522 |
+
|
523 |
+
# Encode input prompt
|
524 |
+
prompt = prompt if isinstance(prompt, list) else [prompt] * batch_size
|
525 |
+
if negative_prompt is not None:
|
526 |
+
negative_prompt = negative_prompt if isinstance(negative_prompt, list) else [negative_prompt] * batch_size
|
527 |
+
text_embeddings = self._encode_prompt(
|
528 |
+
prompt, device, num_videos_per_prompt, do_classifier_free_guidance, negative_prompt
|
529 |
+
)
|
530 |
+
|
531 |
+
# Encode input first frame
|
532 |
+
first_frame_latents = None
|
533 |
+
if first_frame_paths is not None:
|
534 |
+
first_frame_paths = first_frame_paths if isinstance(first_frame_paths, list) else [first_frame_paths] * batch_size
|
535 |
+
if camera_motion is None:
|
536 |
+
img_transform = T.Compose([
|
537 |
+
T.ToTensor(),
|
538 |
+
T.Resize(height, antialias=None),
|
539 |
+
T.CenterCrop((height, width)),
|
540 |
+
T.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True),
|
541 |
+
])
|
542 |
+
elif camera_motion == "pan_left" or camera_motion == "pan_right":
|
543 |
+
img_transform = T.Compose([
|
544 |
+
T.ToTensor(),
|
545 |
+
T.Resize(height, antialias=None),
|
546 |
+
T.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True),
|
547 |
+
])
|
548 |
+
elif camera_motion == "zoom_out" or camera_motion == "zoom_in":
|
549 |
+
img_transform = T.Compose([
|
550 |
+
T.ToTensor(),
|
551 |
+
T.Resize(height * 2, antialias=None),
|
552 |
+
T.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True),
|
553 |
+
])
|
554 |
+
|
555 |
+
first_frames = []
|
556 |
+
for first_frame_path in first_frame_paths:
|
557 |
+
first_frame = Image.open(first_frame_path).convert('RGB')
|
558 |
+
first_frame = img_transform(first_frame)
|
559 |
+
if camera_motion is not None:
|
560 |
+
if camera_motion == "pan_left":
|
561 |
+
first_frame = pan_left(first_frame, num_frames=video_length, crop_width=width)
|
562 |
+
elif camera_motion == "pan_right":
|
563 |
+
first_frame = pan_right(first_frame, num_frames=video_length, crop_width=width)
|
564 |
+
elif camera_motion == "zoom_in":
|
565 |
+
first_frame = zoom_in(first_frame, num_frames=video_length, crop_width=width)
|
566 |
+
elif camera_motion == "zoom_out":
|
567 |
+
first_frame = zoom_out(first_frame, num_frames=video_length, crop_width=width)
|
568 |
+
else:
|
569 |
+
raise NotImplementedError(f"camera_motion: {camera_motion} is not implemented.")
|
570 |
+
first_frames.append(first_frame.unsqueeze(0))
|
571 |
+
first_frames = torch.cat(first_frames, dim=0)
|
572 |
+
if first_frames is not None:
|
573 |
+
first_frames = first_frames.to(device, dtype=self.vae.dtype)
|
574 |
+
if camera_motion is not None:
|
575 |
+
first_frames = rearrange(first_frames, "b f c h w -> (b f) c h w")
|
576 |
+
first_frame_latents = self.vae.encode(first_frames).latent_dist
|
577 |
+
first_frame_latents = first_frame_latents.sample()
|
578 |
+
first_frame_latents = first_frame_latents * self.vae.config.scaling_factor # b, c, h, w
|
579 |
+
first_frame_static_vid = rearrange(first_frame_latents, "(b f) c h w -> b c f h w", f=video_length if camera_motion is not None else 1)
|
580 |
+
first_frame_latents = first_frame_static_vid[:, :, 0, :, :]
|
581 |
+
first_frame_latents = repeat(first_frame_latents, "b c h w -> (b n) c h w", n=num_videos_per_prompt)
|
582 |
+
first_frames = repeat(first_frames, "b c h w -> (b n) c h w", n=num_videos_per_prompt)
|
583 |
+
|
584 |
+
if use_frameinit and camera_motion is None:
|
585 |
+
first_frame_static_vid = repeat(first_frame_static_vid, "b c 1 h w -> b c t h w", t=video_length)
|
586 |
+
|
587 |
+
# self._progress_bar_config = {}
|
588 |
+
# vid = self.decode_latents(first_frame_static_vid)
|
589 |
+
# vid = torch.from_numpy(vid)
|
590 |
+
# from ..utils.util import save_videos_grid
|
591 |
+
# save_videos_grid(vid, "samples/debug/camera_motion/first_frame_static_vid.mp4", fps=8)
|
592 |
+
|
593 |
+
# Prepare timesteps
|
594 |
+
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
595 |
+
timesteps = self.scheduler.timesteps
|
596 |
+
|
597 |
+
# Prepare latent variables
|
598 |
+
num_channels_latents = self.unet.config.in_channels
|
599 |
+
latents = self.prepare_latents(
|
600 |
+
batch_size * num_videos_per_prompt,
|
601 |
+
num_channels_latents,
|
602 |
+
video_length,
|
603 |
+
height,
|
604 |
+
width,
|
605 |
+
text_embeddings.dtype,
|
606 |
+
device,
|
607 |
+
generator,
|
608 |
+
latents,
|
609 |
+
noise_sampling_method,
|
610 |
+
noise_alpha,
|
611 |
+
)
|
612 |
+
latents_dtype = latents.dtype
|
613 |
+
|
614 |
+
if use_frameinit:
|
615 |
+
current_diffuse_timestep = frameinit_noise_level # diffuse to t noise level
|
616 |
+
diffuse_timesteps = torch.full((batch_size,),int(current_diffuse_timestep))
|
617 |
+
diffuse_timesteps = diffuse_timesteps.long()
|
618 |
+
z_T = self.scheduler.add_noise(
|
619 |
+
original_samples=first_frame_static_vid.to(device),
|
620 |
+
noise=latents.to(device),
|
621 |
+
timesteps=diffuse_timesteps.to(device)
|
622 |
+
)
|
623 |
+
latents = freq_mix_3d(z_T.to(dtype=torch.float32), latents.to(dtype=torch.float32), LPF=self.freq_filter)
|
624 |
+
latents = latents.to(dtype=latents_dtype)
|
625 |
+
|
626 |
+
if first_frame_latents is not None:
|
627 |
+
first_frame_noisy_latent = latents[:, :, 0, :, :]
|
628 |
+
latents = latents[:, :, 1:, :, :]
|
629 |
+
|
630 |
+
# Prepare extra step kwargs.
|
631 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
632 |
+
|
633 |
+
# Denoising loop
|
634 |
+
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
635 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
636 |
+
for i, t in enumerate(timesteps):
|
637 |
+
# expand the latents if we are doing classifier free guidance
|
638 |
+
if do_classifier_free_guidance is None:
|
639 |
+
latent_model_input = latents
|
640 |
+
elif do_classifier_free_guidance == "text":
|
641 |
+
latent_model_input = torch.cat([latents] * 2)
|
642 |
+
elif do_classifier_free_guidance == "both":
|
643 |
+
latent_model_input = torch.cat([latents] * 3)
|
644 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
645 |
+
if first_frame_latents is not None:
|
646 |
+
if do_classifier_free_guidance is None:
|
647 |
+
first_frame_latents_input = first_frame_latents
|
648 |
+
elif do_classifier_free_guidance == "text":
|
649 |
+
first_frame_latents_input = torch.cat([first_frame_latents] * 2)
|
650 |
+
elif do_classifier_free_guidance == "both":
|
651 |
+
first_frame_latents_input = torch.cat([first_frame_noisy_latent, first_frame_latents, first_frame_latents])
|
652 |
+
|
653 |
+
first_frame_latents_input = first_frame_latents_input.unsqueeze(2)
|
654 |
+
|
655 |
+
# predict the noise residual
|
656 |
+
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings, first_frame_latents=first_frame_latents_input, frame_stride=frame_stride).sample.to(dtype=latents_dtype)
|
657 |
+
else:
|
658 |
+
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample.to(dtype=latents_dtype)
|
659 |
+
|
660 |
+
# perform guidance
|
661 |
+
if do_classifier_free_guidance:
|
662 |
+
if do_classifier_free_guidance == "text":
|
663 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
664 |
+
noise_pred = noise_pred_uncond + guidance_scale_txt * (noise_pred_text - noise_pred_uncond)
|
665 |
+
elif do_classifier_free_guidance == "both":
|
666 |
+
noise_pred_uncond, noise_pred_img, noise_pred_both = noise_pred.chunk(3)
|
667 |
+
noise_pred = noise_pred_uncond + guidance_scale_img * (noise_pred_img - noise_pred_uncond) + guidance_scale_txt * (noise_pred_both - noise_pred_img)
|
668 |
+
|
669 |
+
if do_classifier_free_guidance and guidance_rescale > 0.0:
|
670 |
+
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
|
671 |
+
# currently only support text guidance
|
672 |
+
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
|
673 |
+
|
674 |
+
# compute the previous noisy sample x_t -> x_t-1
|
675 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
|
676 |
+
|
677 |
+
# call the callback, if provided
|
678 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
679 |
+
progress_bar.update()
|
680 |
+
if callback is not None and i % callback_steps == 0:
|
681 |
+
callback(i, t, latents)
|
682 |
+
|
683 |
+
# Post-processing
|
684 |
+
latents = torch.cat([first_frame_latents.unsqueeze(2), latents], dim=2)
|
685 |
+
# video = self.decode_latents(latents, first_frames)
|
686 |
+
video = self.decode_latents(latents)
|
687 |
+
|
688 |
+
# Convert to tensor
|
689 |
+
if output_type == "tensor":
|
690 |
+
video = torch.from_numpy(video)
|
691 |
+
|
692 |
+
if not return_dict:
|
693 |
+
return video
|
694 |
+
|
695 |
+
return AnimationPipelineOutput(videos=video)
|
consisti2v/utils/frameinit_utils.py
ADDED
@@ -0,0 +1,142 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# modified from https://github.com/TianxingWu/FreeInit/blob/master/freeinit_utils.py
|
2 |
+
import torch
|
3 |
+
import torch.fft as fft
|
4 |
+
import math
|
5 |
+
|
6 |
+
|
7 |
+
def freq_mix_3d(x, noise, LPF):
|
8 |
+
"""
|
9 |
+
Noise reinitialization.
|
10 |
+
|
11 |
+
Args:
|
12 |
+
x: diffused latent
|
13 |
+
noise: randomly sampled noise
|
14 |
+
LPF: low pass filter
|
15 |
+
"""
|
16 |
+
# FFT
|
17 |
+
x_freq = fft.fftn(x, dim=(-3, -2, -1))
|
18 |
+
x_freq = fft.fftshift(x_freq, dim=(-3, -2, -1))
|
19 |
+
noise_freq = fft.fftn(noise, dim=(-3, -2, -1))
|
20 |
+
noise_freq = fft.fftshift(noise_freq, dim=(-3, -2, -1))
|
21 |
+
|
22 |
+
# frequency mix
|
23 |
+
HPF = 1 - LPF
|
24 |
+
x_freq_low = x_freq * LPF
|
25 |
+
noise_freq_high = noise_freq * HPF
|
26 |
+
x_freq_mixed = x_freq_low + noise_freq_high # mix in freq domain
|
27 |
+
|
28 |
+
# IFFT
|
29 |
+
x_freq_mixed = fft.ifftshift(x_freq_mixed, dim=(-3, -2, -1))
|
30 |
+
x_mixed = fft.ifftn(x_freq_mixed, dim=(-3, -2, -1)).real
|
31 |
+
|
32 |
+
return x_mixed
|
33 |
+
|
34 |
+
|
35 |
+
def get_freq_filter(shape, device, filter_type, n, d_s, d_t):
|
36 |
+
"""
|
37 |
+
Form the frequency filter for noise reinitialization.
|
38 |
+
|
39 |
+
Args:
|
40 |
+
shape: shape of latent (B, C, T, H, W)
|
41 |
+
filter_type: type of the freq filter
|
42 |
+
n: (only for butterworth) order of the filter, larger n ~ ideal, smaller n ~ gaussian
|
43 |
+
d_s: normalized stop frequency for spatial dimensions (0.0-1.0)
|
44 |
+
d_t: normalized stop frequency for temporal dimension (0.0-1.0)
|
45 |
+
"""
|
46 |
+
if filter_type == "gaussian":
|
47 |
+
return gaussian_low_pass_filter(shape=shape, d_s=d_s, d_t=d_t).to(device)
|
48 |
+
elif filter_type == "ideal":
|
49 |
+
return ideal_low_pass_filter(shape=shape, d_s=d_s, d_t=d_t).to(device)
|
50 |
+
elif filter_type == "box":
|
51 |
+
return box_low_pass_filter(shape=shape, d_s=d_s, d_t=d_t).to(device)
|
52 |
+
elif filter_type == "butterworth":
|
53 |
+
return butterworth_low_pass_filter(shape=shape, n=n, d_s=d_s, d_t=d_t).to(device)
|
54 |
+
else:
|
55 |
+
raise NotImplementedError
|
56 |
+
|
57 |
+
|
58 |
+
def gaussian_low_pass_filter(shape, d_s=0.25, d_t=0.25):
|
59 |
+
"""
|
60 |
+
Compute the gaussian low pass filter mask.
|
61 |
+
|
62 |
+
Args:
|
63 |
+
shape: shape of the filter (volume)
|
64 |
+
d_s: normalized stop frequency for spatial dimensions (0.0-1.0)
|
65 |
+
d_t: normalized stop frequency for temporal dimension (0.0-1.0)
|
66 |
+
"""
|
67 |
+
T, H, W = shape[-3], shape[-2], shape[-1]
|
68 |
+
mask = torch.zeros(shape)
|
69 |
+
if d_s==0 or d_t==0:
|
70 |
+
return mask
|
71 |
+
for t in range(T):
|
72 |
+
for h in range(H):
|
73 |
+
for w in range(W):
|
74 |
+
d_square = (((d_s/d_t)*(2*t/T-1))**2 + (2*h/H-1)**2 + (2*w/W-1)**2)
|
75 |
+
mask[..., t,h,w] = math.exp(-1/(2*d_s**2) * d_square)
|
76 |
+
return mask
|
77 |
+
|
78 |
+
|
79 |
+
def butterworth_low_pass_filter(shape, n=4, d_s=0.25, d_t=0.25):
|
80 |
+
"""
|
81 |
+
Compute the butterworth low pass filter mask.
|
82 |
+
|
83 |
+
Args:
|
84 |
+
shape: shape of the filter (volume)
|
85 |
+
n: order of the filter, larger n ~ ideal, smaller n ~ gaussian
|
86 |
+
d_s: normalized stop frequency for spatial dimensions (0.0-1.0)
|
87 |
+
d_t: normalized stop frequency for temporal dimension (0.0-1.0)
|
88 |
+
"""
|
89 |
+
T, H, W = shape[-3], shape[-2], shape[-1]
|
90 |
+
mask = torch.zeros(shape)
|
91 |
+
if d_s==0 or d_t==0:
|
92 |
+
return mask
|
93 |
+
for t in range(T):
|
94 |
+
for h in range(H):
|
95 |
+
for w in range(W):
|
96 |
+
d_square = (((d_s/d_t)*(2*t/T-1))**2 + (2*h/H-1)**2 + (2*w/W-1)**2)
|
97 |
+
mask[..., t,h,w] = 1 / (1 + (d_square / d_s**2)**n)
|
98 |
+
return mask
|
99 |
+
|
100 |
+
|
101 |
+
def ideal_low_pass_filter(shape, d_s=0.25, d_t=0.25):
|
102 |
+
"""
|
103 |
+
Compute the ideal low pass filter mask.
|
104 |
+
|
105 |
+
Args:
|
106 |
+
shape: shape of the filter (volume)
|
107 |
+
d_s: normalized stop frequency for spatial dimensions (0.0-1.0)
|
108 |
+
d_t: normalized stop frequency for temporal dimension (0.0-1.0)
|
109 |
+
"""
|
110 |
+
T, H, W = shape[-3], shape[-2], shape[-1]
|
111 |
+
mask = torch.zeros(shape)
|
112 |
+
if d_s==0 or d_t==0:
|
113 |
+
return mask
|
114 |
+
for t in range(T):
|
115 |
+
for h in range(H):
|
116 |
+
for w in range(W):
|
117 |
+
d_square = (((d_s/d_t)*(2*t/T-1))**2 + (2*h/H-1)**2 + (2*w/W-1)**2)
|
118 |
+
mask[..., t,h,w] = 1 if d_square <= d_s*2 else 0
|
119 |
+
return mask
|
120 |
+
|
121 |
+
|
122 |
+
def box_low_pass_filter(shape, d_s=0.25, d_t=0.25):
|
123 |
+
"""
|
124 |
+
Compute the ideal low pass filter mask (approximated version).
|
125 |
+
|
126 |
+
Args:
|
127 |
+
shape: shape of the filter (volume)
|
128 |
+
d_s: normalized stop frequency for spatial dimensions (0.0-1.0)
|
129 |
+
d_t: normalized stop frequency for temporal dimension (0.0-1.0)
|
130 |
+
"""
|
131 |
+
T, H, W = shape[-3], shape[-2], shape[-1]
|
132 |
+
mask = torch.zeros(shape)
|
133 |
+
if d_s==0 or d_t==0:
|
134 |
+
return mask
|
135 |
+
|
136 |
+
threshold_s = round(int(H // 2) * d_s)
|
137 |
+
threshold_t = round(T // 2 * d_t)
|
138 |
+
|
139 |
+
cframe, crow, ccol = T // 2, H // 2, W //2
|
140 |
+
mask[..., cframe - threshold_t:cframe + threshold_t, crow - threshold_s:crow + threshold_s, ccol - threshold_s:ccol + threshold_s] = 1.0
|
141 |
+
|
142 |
+
return mask
|
consisti2v/utils/util.py
ADDED
@@ -0,0 +1,165 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import imageio
|
3 |
+
import numpy as np
|
4 |
+
from typing import Union
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import torchvision
|
8 |
+
import torch.distributed as dist
|
9 |
+
import wandb
|
10 |
+
|
11 |
+
from tqdm import tqdm
|
12 |
+
from einops import rearrange
|
13 |
+
|
14 |
+
from torchmetrics.image.fid import _compute_fid
|
15 |
+
|
16 |
+
|
17 |
+
def zero_rank_print(s):
|
18 |
+
if (not dist.is_initialized()) or (dist.is_initialized() and dist.get_rank() == 0): print("### " + s)
|
19 |
+
|
20 |
+
|
21 |
+
def save_videos_grid(videos: torch.Tensor, path: str, rescale=False, n_rows=6, fps=8, wandb=False, global_step=0, format="gif"):
|
22 |
+
videos = rearrange(videos, "b c t h w -> t b c h w")
|
23 |
+
outputs = []
|
24 |
+
for x in videos:
|
25 |
+
x = torchvision.utils.make_grid(x, nrow=n_rows)
|
26 |
+
x = x.transpose(0, 1).transpose(1, 2).squeeze(-1)
|
27 |
+
if rescale:
|
28 |
+
x = (x + 1.0) / 2.0 # -1,1 -> 0,1
|
29 |
+
x = (x * 255).numpy().astype(np.uint8)
|
30 |
+
outputs.append(x)
|
31 |
+
|
32 |
+
if wandb:
|
33 |
+
wandb_video = wandb.Video(outputs, fps=fps)
|
34 |
+
wandb.log({"val_videos": wandb_video}, step=global_step)
|
35 |
+
|
36 |
+
os.makedirs(os.path.dirname(path), exist_ok=True)
|
37 |
+
if format == "gif":
|
38 |
+
imageio.mimsave(path, outputs, fps=fps)
|
39 |
+
elif format == "mp4":
|
40 |
+
torchvision.io.write_video(path, np.array(outputs), fps=fps, video_codec='h264', options={'crf': '10'})
|
41 |
+
|
42 |
+
# DDIM Inversion
|
43 |
+
@torch.no_grad()
|
44 |
+
def init_prompt(prompt, pipeline):
|
45 |
+
uncond_input = pipeline.tokenizer(
|
46 |
+
[""], padding="max_length", max_length=pipeline.tokenizer.model_max_length,
|
47 |
+
return_tensors="pt"
|
48 |
+
)
|
49 |
+
uncond_embeddings = pipeline.text_encoder(uncond_input.input_ids.to(pipeline.device))[0]
|
50 |
+
text_input = pipeline.tokenizer(
|
51 |
+
[prompt],
|
52 |
+
padding="max_length",
|
53 |
+
max_length=pipeline.tokenizer.model_max_length,
|
54 |
+
truncation=True,
|
55 |
+
return_tensors="pt",
|
56 |
+
)
|
57 |
+
text_embeddings = pipeline.text_encoder(text_input.input_ids.to(pipeline.device))[0]
|
58 |
+
context = torch.cat([uncond_embeddings, text_embeddings])
|
59 |
+
|
60 |
+
return context
|
61 |
+
|
62 |
+
|
63 |
+
def next_step(model_output: Union[torch.FloatTensor, np.ndarray], timestep: int,
|
64 |
+
sample: Union[torch.FloatTensor, np.ndarray], ddim_scheduler):
|
65 |
+
timestep, next_timestep = min(
|
66 |
+
timestep - ddim_scheduler.config.num_train_timesteps // ddim_scheduler.num_inference_steps, 999), timestep
|
67 |
+
alpha_prod_t = ddim_scheduler.alphas_cumprod[timestep] if timestep >= 0 else ddim_scheduler.final_alpha_cumprod
|
68 |
+
alpha_prod_t_next = ddim_scheduler.alphas_cumprod[next_timestep]
|
69 |
+
beta_prod_t = 1 - alpha_prod_t
|
70 |
+
next_original_sample = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
|
71 |
+
next_sample_direction = (1 - alpha_prod_t_next) ** 0.5 * model_output
|
72 |
+
next_sample = alpha_prod_t_next ** 0.5 * next_original_sample + next_sample_direction
|
73 |
+
return next_sample
|
74 |
+
|
75 |
+
|
76 |
+
def get_noise_pred_single(latents, t, context, first_frame_latents, frame_stride, unet):
|
77 |
+
noise_pred = unet(latents, t, encoder_hidden_states=context, first_frame_latents=first_frame_latents, frame_stride=frame_stride).sample
|
78 |
+
return noise_pred
|
79 |
+
|
80 |
+
|
81 |
+
@torch.no_grad()
|
82 |
+
def ddim_loop(pipeline, ddim_scheduler, latent, num_inv_steps, prompt, first_frame_latents, frame_stride):
|
83 |
+
context = init_prompt(prompt, pipeline)
|
84 |
+
uncond_embeddings, cond_embeddings = context.chunk(2)
|
85 |
+
all_latent = [latent]
|
86 |
+
latent = latent.clone().detach()
|
87 |
+
for i in tqdm(range(num_inv_steps)):
|
88 |
+
t = ddim_scheduler.timesteps[len(ddim_scheduler.timesteps) - i - 1]
|
89 |
+
noise_pred = get_noise_pred_single(latent, t, cond_embeddings, first_frame_latents, frame_stride, pipeline.unet)
|
90 |
+
latent = next_step(noise_pred, t, latent, ddim_scheduler)
|
91 |
+
all_latent.append(latent)
|
92 |
+
return all_latent
|
93 |
+
|
94 |
+
|
95 |
+
@torch.no_grad()
|
96 |
+
def ddim_inversion(pipeline, ddim_scheduler, video_latent, num_inv_steps, prompt="", first_frame_latents=None, frame_stride=3):
|
97 |
+
ddim_latents = ddim_loop(pipeline, ddim_scheduler, video_latent, num_inv_steps, prompt, first_frame_latents, frame_stride)
|
98 |
+
return ddim_latents
|
99 |
+
|
100 |
+
|
101 |
+
def compute_fid(real_features, fake_features, num_features, device):
|
102 |
+
orig_dtype = real_features.dtype
|
103 |
+
|
104 |
+
mx_num_feats = (num_features, num_features)
|
105 |
+
real_features_sum = torch.zeros(num_features).double().to(device)
|
106 |
+
real_features_cov_sum = torch.zeros(mx_num_feats).double().to(device)
|
107 |
+
real_features_num_samples = torch.tensor(0).long().to(device)
|
108 |
+
|
109 |
+
fake_features_sum = torch.zeros(num_features).double().to(device)
|
110 |
+
fake_features_cov_sum = torch.zeros(mx_num_feats).double().to(device)
|
111 |
+
fake_features_num_samples = torch.tensor(0).long().to(device)
|
112 |
+
|
113 |
+
real_features = real_features.double()
|
114 |
+
fake_features = fake_features.double()
|
115 |
+
|
116 |
+
real_features_sum += real_features.sum(dim=0)
|
117 |
+
real_features_cov_sum += real_features.t().mm(real_features)
|
118 |
+
real_features_num_samples += real_features.shape[0]
|
119 |
+
|
120 |
+
fake_features_sum += fake_features.sum(dim=0)
|
121 |
+
fake_features_cov_sum += fake_features.t().mm(fake_features)
|
122 |
+
fake_features_num_samples += fake_features.shape[0]
|
123 |
+
|
124 |
+
"""Calculate FID score based on accumulated extracted features from the two distributions."""
|
125 |
+
if real_features_num_samples < 2 or fake_features_num_samples < 2:
|
126 |
+
raise RuntimeError("More than one sample is required for both the real and fake distributed to compute FID")
|
127 |
+
mean_real = (real_features_sum / real_features_num_samples).unsqueeze(0)
|
128 |
+
mean_fake = (fake_features_sum / fake_features_num_samples).unsqueeze(0)
|
129 |
+
|
130 |
+
cov_real_num = real_features_cov_sum - real_features_num_samples * mean_real.t().mm(mean_real)
|
131 |
+
cov_real = cov_real_num / (real_features_num_samples - 1)
|
132 |
+
cov_fake_num = fake_features_cov_sum - fake_features_num_samples * mean_fake.t().mm(mean_fake)
|
133 |
+
cov_fake = cov_fake_num / (fake_features_num_samples - 1)
|
134 |
+
return _compute_fid(mean_real.squeeze(0), cov_real, mean_fake.squeeze(0), cov_fake).to(orig_dtype)
|
135 |
+
|
136 |
+
|
137 |
+
def compute_inception_score(gen_probs, num_splits=10):
|
138 |
+
num_gen = gen_probs.shape[0]
|
139 |
+
gen_probs = gen_probs.detach().cpu().numpy()
|
140 |
+
scores = []
|
141 |
+
np.random.RandomState(42).shuffle(gen_probs)
|
142 |
+
for i in range(num_splits):
|
143 |
+
part = gen_probs[i * num_gen // num_splits : (i + 1) * num_gen // num_splits]
|
144 |
+
kl = part * (np.log(part) - np.log(np.mean(part, axis=0, keepdims=True)))
|
145 |
+
kl = np.mean(np.sum(kl, axis=1))
|
146 |
+
scores.append(np.exp(kl))
|
147 |
+
return float(np.mean(scores)), float(np.std(scores))
|
148 |
+
# idx = torch.randperm(features.shape[0])
|
149 |
+
# features = features[idx]
|
150 |
+
# # calculate probs and logits
|
151 |
+
# prob = features.softmax(dim=1)
|
152 |
+
# log_prob = features.log_softmax(dim=1)
|
153 |
+
|
154 |
+
# # split into groups
|
155 |
+
# prob = prob.chunk(splits, dim=0)
|
156 |
+
# log_prob = log_prob.chunk(splits, dim=0)
|
157 |
+
|
158 |
+
# # calculate score per split
|
159 |
+
# mean_prob = [p.mean(dim=0, keepdim=True) for p in prob]
|
160 |
+
# kl_ = [p * (log_p - m_p.log()) for p, log_p, m_p in zip(prob, log_prob, mean_prob)]
|
161 |
+
# kl_ = [k.sum(dim=1).mean().exp() for k in kl_]
|
162 |
+
# kl = torch.stack(kl_)
|
163 |
+
|
164 |
+
# return mean and std
|
165 |
+
# return kl.mean(), kl.std()
|
environment.yaml
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
name: consisti2v
|
2 |
+
channels:
|
3 |
+
- pytorch
|
4 |
+
- nvidia
|
5 |
+
dependencies:
|
6 |
+
- python=3.10
|
7 |
+
- pytorch=2.1.0
|
8 |
+
- torchvision=0.16.0
|
9 |
+
- torchaudio=2.1.0
|
10 |
+
- pytorch-cuda=11.8
|
11 |
+
- pip
|
12 |
+
- pip:
|
13 |
+
- diffusers==0.21.2
|
14 |
+
- transformers==4.25.1
|
15 |
+
- accelerate==0.23.0
|
16 |
+
- imageio==2.27.0
|
17 |
+
- decord==0.6.0
|
18 |
+
- einops
|
19 |
+
- omegaconf
|
20 |
+
- safetensors
|
21 |
+
- gradio==3.42.0
|
22 |
+
- wandb
|
23 |
+
- moviepy
|
24 |
+
- scikit-learn
|
25 |
+
- av
|
26 |
+
- rotary_embedding_torch
|
27 |
+
- torchmetrics
|
28 |
+
- torch-fidelity
|
requirements.txt
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch==2.1.0
|
2 |
+
torchvision==0.16.0
|
3 |
+
torchaudio==2.1.0
|
4 |
+
diffusers==0.21.2
|
5 |
+
transformers==4.25.1
|
6 |
+
accelerate==0.23.0
|
7 |
+
imageio==2.27.0
|
8 |
+
decord==0.6.0
|
9 |
+
spaces
|
10 |
+
einops
|
11 |
+
omegaconf
|
12 |
+
safetensors
|
13 |
+
moviepy
|
14 |
+
scikit-learn
|
15 |
+
av
|
16 |
+
rotary_embedding_torch
|
17 |
+
torchmetrics
|
18 |
+
torch-fidelity
|
scripts/animate.py
ADDED
@@ -0,0 +1,179 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import datetime
|
3 |
+
import random
|
4 |
+
import os
|
5 |
+
import logging
|
6 |
+
from omegaconf import OmegaConf
|
7 |
+
|
8 |
+
import torch
|
9 |
+
|
10 |
+
import diffusers
|
11 |
+
from diffusers import AutoencoderKL, DDIMScheduler
|
12 |
+
|
13 |
+
from transformers import CLIPTextModel, CLIPTokenizer
|
14 |
+
|
15 |
+
from consisti2v.models.videoldm_unet import VideoLDMUNet3DConditionModel
|
16 |
+
from consisti2v.pipelines.pipeline_conditional_animation import ConditionalAnimationPipeline
|
17 |
+
from consisti2v.utils.util import save_videos_grid
|
18 |
+
from diffusers.utils.import_utils import is_xformers_available
|
19 |
+
|
20 |
+
def main(args, config):
|
21 |
+
logging.basicConfig(
|
22 |
+
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
23 |
+
datefmt="%m/%d/%Y %H:%M:%S",
|
24 |
+
level=logging.INFO,
|
25 |
+
)
|
26 |
+
diffusers.utils.logging.set_verbosity_info()
|
27 |
+
|
28 |
+
time_str = datetime.datetime.now().strftime("%Y-%m-%dT%H-%M-%S")
|
29 |
+
savedir = f"{config.output_dir}/{config.output_name}-{time_str}"
|
30 |
+
os.makedirs(savedir)
|
31 |
+
|
32 |
+
samples = []
|
33 |
+
sample_idx = 0
|
34 |
+
|
35 |
+
### >>> create validation pipeline >>> ###
|
36 |
+
if config.pipeline_pretrained_path is None:
|
37 |
+
noise_scheduler = DDIMScheduler(**OmegaConf.to_container(config.noise_scheduler_kwargs))
|
38 |
+
tokenizer = CLIPTokenizer.from_pretrained(config.pretrained_model_path, subfolder="tokenizer", use_safetensors=True)
|
39 |
+
text_encoder = CLIPTextModel.from_pretrained(config.pretrained_model_path, subfolder="text_encoder")
|
40 |
+
vae = AutoencoderKL.from_pretrained(config.pretrained_model_path, subfolder="vae", use_safetensors=True)
|
41 |
+
unet = VideoLDMUNet3DConditionModel.from_pretrained(
|
42 |
+
config.pretrained_model_path,
|
43 |
+
subfolder="unet",
|
44 |
+
variant=config.unet_additional_kwargs['variant'],
|
45 |
+
temp_pos_embedding=config.unet_additional_kwargs['temp_pos_embedding'],
|
46 |
+
augment_temporal_attention=config.unet_additional_kwargs['augment_temporal_attention'],
|
47 |
+
use_temporal=True,
|
48 |
+
n_frames=config.sampling_kwargs['n_frames'],
|
49 |
+
n_temp_heads=config.unet_additional_kwargs['n_temp_heads'],
|
50 |
+
first_frame_condition_mode=config.unet_additional_kwargs['first_frame_condition_mode'],
|
51 |
+
use_frame_stride_condition=config.unet_additional_kwargs['use_frame_stride_condition'],
|
52 |
+
use_safetensors=True
|
53 |
+
)
|
54 |
+
|
55 |
+
# 1. unet ckpt
|
56 |
+
if config.unet_path is not None:
|
57 |
+
if os.path.isdir(config.unet_path):
|
58 |
+
unet_dict = VideoLDMUNet3DConditionModel.from_pretrained(config.unet_path)
|
59 |
+
m, u = unet.load_state_dict(unet_dict.state_dict(), strict=False)
|
60 |
+
assert len(u) == 0
|
61 |
+
del unet_dict
|
62 |
+
else:
|
63 |
+
checkpoint_dict = torch.load(config.unet_path, map_location="cpu")
|
64 |
+
state_dict = checkpoint_dict["state_dict"] if "state_dict" in checkpoint_dict else checkpoint_dict
|
65 |
+
if config.unet_ckpt_prefix is not None:
|
66 |
+
state_dict = {k.replace(config.unet_ckpt_prefix, ''): v for k, v in state_dict.items()}
|
67 |
+
m, u = unet.load_state_dict(state_dict, strict=False)
|
68 |
+
assert len(u) == 0
|
69 |
+
|
70 |
+
if is_xformers_available() and int(torch.__version__.split(".")[0]) < 2:
|
71 |
+
unet.enable_xformers_memory_efficient_attention()
|
72 |
+
|
73 |
+
pipeline = ConditionalAnimationPipeline(
|
74 |
+
vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=noise_scheduler)
|
75 |
+
|
76 |
+
else:
|
77 |
+
pipeline = ConditionalAnimationPipeline.from_pretrained(config.pipeline_pretrained_path)
|
78 |
+
|
79 |
+
pipeline.to("cuda")
|
80 |
+
|
81 |
+
# (frameinit) initialize frequency filter for noise reinitialization -------------
|
82 |
+
if config.frameinit_kwargs.enable:
|
83 |
+
pipeline.init_filter(
|
84 |
+
width = config.sampling_kwargs.width,
|
85 |
+
height = config.sampling_kwargs.height,
|
86 |
+
video_length = config.sampling_kwargs.n_frames,
|
87 |
+
filter_params = config.frameinit_kwargs.filter_params,
|
88 |
+
)
|
89 |
+
# -------------------------------------------------------------------------------
|
90 |
+
### <<< create validation pipeline <<< ###
|
91 |
+
|
92 |
+
if args.prompt is not None:
|
93 |
+
prompts = [args.prompt]
|
94 |
+
n_prompts = [args.n_prompt]
|
95 |
+
first_frame_paths = [args.path_to_first_frame]
|
96 |
+
random_seeds = [int(args.seed)] if args.seed != "random" else "random"
|
97 |
+
else:
|
98 |
+
prompt_config = OmegaConf.load(args.prompt_config)
|
99 |
+
prompts = prompt_config.prompts
|
100 |
+
n_prompts = list(prompt_config.n_prompts) * len(prompts) if len(prompt_config.n_prompts) == 1 else prompt_config.n_prompts
|
101 |
+
first_frame_paths = prompt_config.path_to_first_frames
|
102 |
+
random_seeds = prompt_config.seeds
|
103 |
+
|
104 |
+
if random_seeds == "random":
|
105 |
+
random_seeds = [random.randint(0, 1e5) for _ in range(len(prompts))]
|
106 |
+
else:
|
107 |
+
random_seeds = [random_seeds] if isinstance(random_seeds, int) else list(random_seeds)
|
108 |
+
random_seeds = random_seeds * len(prompts) if len(random_seeds) == 1 else random_seeds
|
109 |
+
|
110 |
+
config.prompt_kwargs = OmegaConf.create({"random_seeds": [], "prompts": prompts, "n_prompts": n_prompts, "first_frame_paths": first_frame_paths})
|
111 |
+
for prompt_idx, (prompt, n_prompt, first_frame_path, random_seed) in enumerate(zip(prompts, n_prompts, first_frame_paths, random_seeds)):
|
112 |
+
# manually set random seed for reproduction
|
113 |
+
if random_seed != -1: torch.manual_seed(random_seed)
|
114 |
+
else: torch.seed()
|
115 |
+
config.prompt_kwargs.random_seeds.append(torch.initial_seed())
|
116 |
+
|
117 |
+
print(f"current seed: {torch.initial_seed()}")
|
118 |
+
print(f"sampling {prompt} ...")
|
119 |
+
sample = pipeline(
|
120 |
+
prompt,
|
121 |
+
negative_prompt = n_prompt,
|
122 |
+
first_frame_paths = first_frame_path,
|
123 |
+
num_inference_steps = config.sampling_kwargs.steps,
|
124 |
+
guidance_scale_txt = config.sampling_kwargs.guidance_scale_txt,
|
125 |
+
guidance_scale_img = config.sampling_kwargs.guidance_scale_img,
|
126 |
+
width = config.sampling_kwargs.width,
|
127 |
+
height = config.sampling_kwargs.height,
|
128 |
+
video_length = config.sampling_kwargs.n_frames,
|
129 |
+
noise_sampling_method = config.unet_additional_kwargs['noise_sampling_method'],
|
130 |
+
noise_alpha = float(config.unet_additional_kwargs['noise_alpha']),
|
131 |
+
eta = config.sampling_kwargs.ddim_eta,
|
132 |
+
frame_stride = config.sampling_kwargs.frame_stride,
|
133 |
+
guidance_rescale = config.sampling_kwargs.guidance_rescale,
|
134 |
+
num_videos_per_prompt = config.sampling_kwargs.num_videos_per_prompt,
|
135 |
+
use_frameinit = config.frameinit_kwargs.enable,
|
136 |
+
frameinit_noise_level = config.frameinit_kwargs.noise_level,
|
137 |
+
camera_motion = config.frameinit_kwargs.camera_motion,
|
138 |
+
).videos
|
139 |
+
samples.append(sample)
|
140 |
+
|
141 |
+
prompt = "-".join((prompt.replace("/", "").split(" ")[:10])).replace(":", "")
|
142 |
+
if sample.shape[0] > 1:
|
143 |
+
for cnt, samp in enumerate(sample):
|
144 |
+
save_videos_grid(samp.unsqueeze(0), f"{savedir}/sample/{sample_idx}-{cnt + 1}-{prompt}.{args.format}", format=args.format)
|
145 |
+
else:
|
146 |
+
save_videos_grid(sample, f"{savedir}/sample/{sample_idx}-{prompt}.{args.format}", format=args.format)
|
147 |
+
print(f"save to {savedir}/sample/{prompt}.{args.format}")
|
148 |
+
|
149 |
+
sample_idx += 1
|
150 |
+
|
151 |
+
samples = torch.concat(samples)
|
152 |
+
save_videos_grid(samples, f"{savedir}/sample.{args.format}", n_rows=4, format=args.format)
|
153 |
+
|
154 |
+
OmegaConf.save(config, f"{savedir}/config.yaml")
|
155 |
+
|
156 |
+
if args.save_model:
|
157 |
+
pipeline.save_pretrained(f"{savedir}/model")
|
158 |
+
|
159 |
+
|
160 |
+
if __name__ == "__main__":
|
161 |
+
parser = argparse.ArgumentParser()
|
162 |
+
parser.add_argument("--inference_config", type=str, default="configs/inference/inference.yaml")
|
163 |
+
parser.add_argument("--prompt", "-p", type=str, default=None)
|
164 |
+
parser.add_argument("--n_prompt", "-n", type=str, default="")
|
165 |
+
parser.add_argument("--seed", type=str, default="random")
|
166 |
+
parser.add_argument("--path_to_first_frame", "-f", type=str, default=None)
|
167 |
+
parser.add_argument("--prompt_config", type=str, default="configs/prompts/default.yaml")
|
168 |
+
parser.add_argument("--format", type=str, default="mp4", choices=["gif", "mp4"])
|
169 |
+
parser.add_argument("--save_model", action="store_true")
|
170 |
+
parser.add_argument("optional_args", nargs='*', default=[])
|
171 |
+
args = parser.parse_args()
|
172 |
+
|
173 |
+
config = OmegaConf.load(args.inference_config)
|
174 |
+
|
175 |
+
if args.optional_args:
|
176 |
+
modified_config = OmegaConf.from_dotlist(args.optional_args)
|
177 |
+
config = OmegaConf.merge(config, modified_config)
|
178 |
+
|
179 |
+
main(args, config)
|
scripts/animate_autoregress.py
ADDED
@@ -0,0 +1,185 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import datetime
|
3 |
+
import random
|
4 |
+
import os
|
5 |
+
import logging
|
6 |
+
from omegaconf import OmegaConf
|
7 |
+
|
8 |
+
import torch
|
9 |
+
|
10 |
+
import diffusers
|
11 |
+
from diffusers import AutoencoderKL, DDIMScheduler
|
12 |
+
|
13 |
+
from transformers import CLIPTextModel, CLIPTokenizer
|
14 |
+
|
15 |
+
from consisti2v.models.videoldm_unet import VideoLDMUNet3DConditionModel
|
16 |
+
from consisti2v.pipelines.pipeline_autoregress_animation import AutoregressiveAnimationPipeline
|
17 |
+
from consisti2v.utils.util import save_videos_grid
|
18 |
+
from diffusers.utils.import_utils import is_xformers_available
|
19 |
+
|
20 |
+
def main(args, config):
|
21 |
+
logging.basicConfig(
|
22 |
+
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
23 |
+
datefmt="%m/%d/%Y %H:%M:%S",
|
24 |
+
level=logging.INFO,
|
25 |
+
)
|
26 |
+
diffusers.utils.logging.set_verbosity_info()
|
27 |
+
|
28 |
+
time_str = datetime.datetime.now().strftime("%Y-%m-%dT%H-%M-%S")
|
29 |
+
savedir = f"{config.output_dir}/{config.output_name}-{time_str}"
|
30 |
+
os.makedirs(savedir)
|
31 |
+
|
32 |
+
samples = []
|
33 |
+
sample_idx = 0
|
34 |
+
|
35 |
+
### >>> create validation pipeline >>> ###
|
36 |
+
if config.pipeline_pretrained_path is None:
|
37 |
+
noise_scheduler = DDIMScheduler(**OmegaConf.to_container(config.noise_scheduler_kwargs))
|
38 |
+
tokenizer = CLIPTokenizer.from_pretrained(config.pretrained_model_path, subfolder="tokenizer", use_safetensors=True)
|
39 |
+
text_encoder = CLIPTextModel.from_pretrained(config.pretrained_model_path, subfolder="text_encoder")
|
40 |
+
vae = AutoencoderKL.from_pretrained(config.pretrained_model_path, subfolder="vae", use_safetensors=True)
|
41 |
+
unet = VideoLDMUNet3DConditionModel.from_pretrained(
|
42 |
+
config.pretrained_model_path,
|
43 |
+
subfolder="unet",
|
44 |
+
variant=config.unet_additional_kwargs['variant'],
|
45 |
+
temp_pos_embedding=config.unet_additional_kwargs['temp_pos_embedding'],
|
46 |
+
augment_temporal_attention=config.unet_additional_kwargs['augment_temporal_attention'],
|
47 |
+
use_temporal=True,
|
48 |
+
n_frames=config.sampling_kwargs['n_frames'],
|
49 |
+
n_temp_heads=config.unet_additional_kwargs['n_temp_heads'],
|
50 |
+
first_frame_condition_mode=config.unet_additional_kwargs['first_frame_condition_mode'],
|
51 |
+
use_frame_stride_condition=config.unet_additional_kwargs['use_frame_stride_condition'],
|
52 |
+
use_safetensors=True
|
53 |
+
)
|
54 |
+
|
55 |
+
params_unet = [p.numel() for n, p in unet.named_parameters()]
|
56 |
+
params_vae = [p.numel() for n, p in vae.named_parameters()]
|
57 |
+
params_text_encoder = [p.numel() for n, p in text_encoder.named_parameters()]
|
58 |
+
params = params_unet + params_vae + params_text_encoder
|
59 |
+
print(f"### UNet Parameters: {sum(params) / 1e6} M")
|
60 |
+
|
61 |
+
# 1. unet ckpt
|
62 |
+
if config.unet_path is not None:
|
63 |
+
if os.path.isdir(config.unet_path):
|
64 |
+
unet_dict = VideoLDMUNet3DConditionModel.from_pretrained(config.unet_path)
|
65 |
+
m, u = unet.load_state_dict(unet_dict.state_dict(), strict=False)
|
66 |
+
assert len(u) == 0
|
67 |
+
del unet_dict
|
68 |
+
else:
|
69 |
+
checkpoint_dict = torch.load(config.unet_path, map_location="cpu")
|
70 |
+
state_dict = checkpoint_dict["state_dict"] if "state_dict" in checkpoint_dict else checkpoint_dict
|
71 |
+
if config.unet_ckpt_prefix is not None:
|
72 |
+
state_dict = {k.replace(config.unet_ckpt_prefix, ''): v for k, v in state_dict.items()}
|
73 |
+
m, u = unet.load_state_dict(state_dict, strict=False)
|
74 |
+
assert len(u) == 0
|
75 |
+
|
76 |
+
if is_xformers_available() and int(torch.__version__.split(".")[0]) < 2:
|
77 |
+
unet.enable_xformers_memory_efficient_attention()
|
78 |
+
|
79 |
+
pipeline = AutoregressiveAnimationPipeline(
|
80 |
+
vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=noise_scheduler)
|
81 |
+
|
82 |
+
else:
|
83 |
+
pipeline = AutoregressiveAnimationPipeline.from_pretrained(config.pipeline_pretrained_path)
|
84 |
+
|
85 |
+
pipeline.to("cuda")
|
86 |
+
|
87 |
+
# (frameinit) initialize frequency filter for noise reinitialization -------------
|
88 |
+
if config.frameinit_kwargs.enable:
|
89 |
+
pipeline.init_filter(
|
90 |
+
width = config.sampling_kwargs.width,
|
91 |
+
height = config.sampling_kwargs.height,
|
92 |
+
video_length = config.sampling_kwargs.n_frames,
|
93 |
+
filter_params = config.frameinit_kwargs.filter_params,
|
94 |
+
)
|
95 |
+
# -------------------------------------------------------------------------------
|
96 |
+
### <<< create validation pipeline <<< ###
|
97 |
+
|
98 |
+
if args.prompt is not None:
|
99 |
+
prompts = [args.prompt]
|
100 |
+
n_prompts = [args.n_prompt]
|
101 |
+
first_frame_paths = [args.path_to_first_frame]
|
102 |
+
random_seeds = [int(args.seed)] if args.seed != "random" else "random"
|
103 |
+
else:
|
104 |
+
prompt_config = OmegaConf.load(args.prompt_config)
|
105 |
+
prompts = prompt_config.prompts
|
106 |
+
n_prompts = list(prompt_config.n_prompts) * len(prompts) if len(prompt_config.n_prompts) == 1 else prompt_config.n_prompts
|
107 |
+
first_frame_paths = prompt_config.path_to_first_frames
|
108 |
+
random_seeds = prompt_config.seeds
|
109 |
+
|
110 |
+
if random_seeds == "random":
|
111 |
+
random_seeds = [random.randint(0, 1e5) for _ in range(len(prompts))]
|
112 |
+
else:
|
113 |
+
random_seeds = [random_seeds] if isinstance(random_seeds, int) else list(random_seeds)
|
114 |
+
random_seeds = random_seeds * len(prompts) if len(random_seeds) == 1 else random_seeds
|
115 |
+
|
116 |
+
config.prompt_kwargs = OmegaConf.create({"random_seeds": [], "prompts": prompts, "n_prompts": n_prompts, "first_frame_paths": first_frame_paths})
|
117 |
+
for prompt_idx, (prompt, n_prompt, first_frame_path, random_seed) in enumerate(zip(prompts, n_prompts, first_frame_paths, random_seeds)):
|
118 |
+
# manually set random seed for reproduction
|
119 |
+
if random_seed != -1: torch.manual_seed(random_seed)
|
120 |
+
else: torch.seed()
|
121 |
+
config.prompt_kwargs.random_seeds.append(torch.initial_seed())
|
122 |
+
|
123 |
+
print(f"current seed: {torch.initial_seed()}")
|
124 |
+
print(f"sampling {prompt} ...")
|
125 |
+
sample = pipeline(
|
126 |
+
prompt,
|
127 |
+
negative_prompt = n_prompt,
|
128 |
+
first_frame_paths = first_frame_path,
|
129 |
+
num_inference_steps = config.sampling_kwargs.steps,
|
130 |
+
guidance_scale_txt = config.sampling_kwargs.guidance_scale_txt,
|
131 |
+
guidance_scale_img = config.sampling_kwargs.guidance_scale_img,
|
132 |
+
width = config.sampling_kwargs.width,
|
133 |
+
height = config.sampling_kwargs.height,
|
134 |
+
video_length = config.sampling_kwargs.n_frames,
|
135 |
+
noise_sampling_method = config.unet_additional_kwargs['noise_sampling_method'],
|
136 |
+
noise_alpha = float(config.unet_additional_kwargs['noise_alpha']),
|
137 |
+
eta = config.sampling_kwargs.ddim_eta,
|
138 |
+
frame_stride = config.sampling_kwargs.frame_stride,
|
139 |
+
guidance_rescale = config.sampling_kwargs.guidance_rescale,
|
140 |
+
num_videos_per_prompt = config.sampling_kwargs.num_videos_per_prompt,
|
141 |
+
autoregress_steps = config.sampling_kwargs.autoregress_steps,
|
142 |
+
use_frameinit = config.frameinit_kwargs.enable,
|
143 |
+
frameinit_noise_level = config.frameinit_kwargs.noise_level,
|
144 |
+
).videos
|
145 |
+
samples.append(sample)
|
146 |
+
|
147 |
+
prompt = "-".join((prompt.replace("/", "").split(" ")[:10])).replace(":", "")
|
148 |
+
if sample.shape[0] > 1:
|
149 |
+
for cnt, samp in enumerate(sample):
|
150 |
+
save_videos_grid(samp.unsqueeze(0), f"{savedir}/sample/{sample_idx}-{cnt + 1}-{prompt}.{args.format}", format=args.format)
|
151 |
+
else:
|
152 |
+
save_videos_grid(sample, f"{savedir}/sample/{sample_idx}-{prompt}.{args.format}", format=args.format)
|
153 |
+
print(f"save to {savedir}/sample/{prompt}.{args.format}")
|
154 |
+
|
155 |
+
sample_idx += 1
|
156 |
+
|
157 |
+
samples = torch.concat(samples)
|
158 |
+
save_videos_grid(samples, f"{savedir}/sample.{args.format}", n_rows=4, format=args.format)
|
159 |
+
|
160 |
+
OmegaConf.save(config, f"{savedir}/config.yaml")
|
161 |
+
|
162 |
+
if args.save_model:
|
163 |
+
pipeline.save_pretrained(f"{savedir}/model")
|
164 |
+
|
165 |
+
|
166 |
+
if __name__ == "__main__":
|
167 |
+
parser = argparse.ArgumentParser()
|
168 |
+
parser.add_argument("--inference_config", type=str, default="configs/inference/inference_autoregress.yaml")
|
169 |
+
parser.add_argument("--prompt", "-p", type=str, default=None)
|
170 |
+
parser.add_argument("--n_prompt", "-n", type=str, default="")
|
171 |
+
parser.add_argument("--seed", type=str, default="random")
|
172 |
+
parser.add_argument("--path_to_first_frame", "-f", type=str, default=None)
|
173 |
+
parser.add_argument("--prompt_config", type=str, default="configs/prompts/default.yaml")
|
174 |
+
parser.add_argument("--format", type=str, default="gif", choices=["gif", "mp4"])
|
175 |
+
parser.add_argument("--save_model", action="store_true")
|
176 |
+
parser.add_argument("optional_args", nargs='*', default=[])
|
177 |
+
args = parser.parse_args()
|
178 |
+
|
179 |
+
config = OmegaConf.load(args.inference_config)
|
180 |
+
|
181 |
+
if args.optional_args:
|
182 |
+
modified_config = OmegaConf.from_dotlist(args.optional_args)
|
183 |
+
config = OmegaConf.merge(config, modified_config)
|
184 |
+
|
185 |
+
main(args, config)
|
train.py
ADDED
@@ -0,0 +1,617 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import math
|
3 |
+
import wandb
|
4 |
+
import random
|
5 |
+
import time
|
6 |
+
import logging
|
7 |
+
import inspect
|
8 |
+
import argparse
|
9 |
+
import datetime
|
10 |
+
import numpy as np
|
11 |
+
|
12 |
+
from pathlib import Path
|
13 |
+
from tqdm.auto import tqdm
|
14 |
+
from einops import rearrange, repeat
|
15 |
+
from omegaconf import OmegaConf
|
16 |
+
from typing import Dict, Optional, Tuple
|
17 |
+
|
18 |
+
import torch
|
19 |
+
import torch.nn.functional as F
|
20 |
+
|
21 |
+
import diffusers
|
22 |
+
from diffusers import AutoencoderKL, DDIMScheduler
|
23 |
+
from diffusers.optimization import get_scheduler
|
24 |
+
from diffusers.utils import check_min_version
|
25 |
+
from diffusers.utils.import_utils import is_xformers_available
|
26 |
+
from diffusers.training_utils import EMAModel
|
27 |
+
|
28 |
+
import transformers
|
29 |
+
from transformers import CLIPTextModel, CLIPTokenizer
|
30 |
+
|
31 |
+
from accelerate import Accelerator, DistributedDataParallelKwargs, InitProcessGroupKwargs
|
32 |
+
from accelerate.logging import get_logger
|
33 |
+
from accelerate.utils import set_seed
|
34 |
+
|
35 |
+
from consisti2v.data.dataset import WebVid10M, Pexels, JointDataset
|
36 |
+
from consisti2v.models.videoldm_unet import VideoLDMUNet3DConditionModel
|
37 |
+
from consisti2v.pipelines.pipeline_conditional_animation import ConditionalAnimationPipeline
|
38 |
+
from consisti2v.utils.util import save_videos_grid
|
39 |
+
|
40 |
+
logger = get_logger(__name__, log_level="INFO")
|
41 |
+
|
42 |
+
def main(
|
43 |
+
name: str,
|
44 |
+
use_wandb: bool,
|
45 |
+
|
46 |
+
is_image: bool,
|
47 |
+
|
48 |
+
output_dir: str,
|
49 |
+
pretrained_model_path: str,
|
50 |
+
|
51 |
+
train_data: Dict,
|
52 |
+
validation_data: Dict,
|
53 |
+
|
54 |
+
cfg_random_null_text_ratio: float = 0.1,
|
55 |
+
cfg_random_null_img_ratio: float = 0.0,
|
56 |
+
|
57 |
+
resume_from_checkpoint: Optional[str] = None,
|
58 |
+
unet_additional_kwargs: Dict = {},
|
59 |
+
use_ema: bool = False,
|
60 |
+
ema_decay: float = 0.9999,
|
61 |
+
noise_scheduler_kwargs = None,
|
62 |
+
|
63 |
+
max_train_epoch: int = -1,
|
64 |
+
max_train_steps: int = 100,
|
65 |
+
validation_steps: int = 100,
|
66 |
+
|
67 |
+
learning_rate: float = 3e-5,
|
68 |
+
scale_lr: bool = False,
|
69 |
+
lr_warmup_steps: int = 0,
|
70 |
+
lr_scheduler: str = "constant",
|
71 |
+
|
72 |
+
trainable_modules: Tuple[str] = (None, ),
|
73 |
+
num_workers: int = 32,
|
74 |
+
train_batch_size: int = 1,
|
75 |
+
adam_beta1: float = 0.9,
|
76 |
+
adam_beta2: float = 0.999,
|
77 |
+
adam_weight_decay: float = 1e-2,
|
78 |
+
adam_epsilon: float = 1e-08,
|
79 |
+
max_grad_norm: float = 1.0,
|
80 |
+
gradient_accumulation_steps: int = 1,
|
81 |
+
gradient_checkpointing: bool = False,
|
82 |
+
checkpointing_epochs: int = 5,
|
83 |
+
checkpointing_steps: int = -1,
|
84 |
+
|
85 |
+
mixed_precision: Optional[str] = "fp16",
|
86 |
+
enable_xformers_memory_efficient_attention: bool = True,
|
87 |
+
|
88 |
+
seed: Optional[int] = 42,
|
89 |
+
is_debug: bool = False,
|
90 |
+
):
|
91 |
+
check_min_version("0.10.0.dev0")
|
92 |
+
*_, config = inspect.getargvalues(inspect.currentframe())
|
93 |
+
config = {k: v for k, v in config.items() if k != 'config' and k != '_'}
|
94 |
+
|
95 |
+
ddp_kwargs = DistributedDataParallelKwargs(find_unused_parameters=True if not is_image else False)
|
96 |
+
init_kwargs = InitProcessGroupKwargs(timeout=datetime.timedelta(seconds=3600))
|
97 |
+
|
98 |
+
accelerator = Accelerator(
|
99 |
+
gradient_accumulation_steps=gradient_accumulation_steps,
|
100 |
+
mixed_precision=mixed_precision,
|
101 |
+
kwargs_handlers=[ddp_kwargs, init_kwargs],
|
102 |
+
)
|
103 |
+
|
104 |
+
if seed is not None:
|
105 |
+
set_seed(seed)
|
106 |
+
|
107 |
+
# Logging folder
|
108 |
+
folder_name = "debug" if is_debug else name + datetime.datetime.now().strftime("-%Y-%m-%dT%H-%M-%S")
|
109 |
+
output_dir = os.path.join(output_dir, folder_name)
|
110 |
+
if is_debug and os.path.exists(output_dir):
|
111 |
+
os.system(f"rm -rf {output_dir}")
|
112 |
+
|
113 |
+
# Make one log on every process with the configuration for debugging.
|
114 |
+
logging.basicConfig(
|
115 |
+
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
116 |
+
datefmt="%m/%d/%Y %H:%M:%S",
|
117 |
+
level=logging.INFO,
|
118 |
+
)
|
119 |
+
logger.info(accelerator.state, main_process_only=False)
|
120 |
+
|
121 |
+
if accelerator.is_local_main_process:
|
122 |
+
transformers.utils.logging.set_verbosity_warning()
|
123 |
+
diffusers.utils.logging.set_verbosity_info()
|
124 |
+
else:
|
125 |
+
transformers.utils.logging.set_verbosity_error()
|
126 |
+
diffusers.utils.logging.set_verbosity_error()
|
127 |
+
|
128 |
+
if accelerator.is_main_process and (not is_debug) and use_wandb:
|
129 |
+
project_name = "text_image_to_video" if not is_image else "image_finetune"
|
130 |
+
wandb.init(project=project_name, name=folder_name, config=config)
|
131 |
+
accelerator.wait_for_everyone()
|
132 |
+
|
133 |
+
# Handle the output folder creation
|
134 |
+
if accelerator.is_main_process:
|
135 |
+
os.makedirs(output_dir, exist_ok=True)
|
136 |
+
os.makedirs(f"{output_dir}/samples", exist_ok=True)
|
137 |
+
os.makedirs(f"{output_dir}/sanity_check", exist_ok=True)
|
138 |
+
os.makedirs(f"{output_dir}/checkpoints", exist_ok=True)
|
139 |
+
OmegaConf.save(config, os.path.join(output_dir, 'config.yaml'))
|
140 |
+
|
141 |
+
# TODO: change all datasets to fps+duration in the future
|
142 |
+
if train_data.dataset == "pexels":
|
143 |
+
train_data.sample_n_frames = train_data.sample_duration * train_data.sample_fps
|
144 |
+
elif train_data.dataset == "joint":
|
145 |
+
if train_data.sample_duration is not None:
|
146 |
+
train_data.sample_n_frames = train_data.sample_duration * train_data.sample_fps
|
147 |
+
# Load scheduler, tokenizer and models.
|
148 |
+
noise_scheduler = DDIMScheduler(**OmegaConf.to_container(noise_scheduler_kwargs))
|
149 |
+
vae = AutoencoderKL.from_pretrained(pretrained_model_path, subfolder="vae")
|
150 |
+
tokenizer = CLIPTokenizer.from_pretrained(pretrained_model_path, subfolder="tokenizer")
|
151 |
+
text_encoder = CLIPTextModel.from_pretrained(pretrained_model_path, subfolder="text_encoder")
|
152 |
+
unet = VideoLDMUNet3DConditionModel.from_pretrained(
|
153 |
+
pretrained_model_path,
|
154 |
+
subfolder="unet",
|
155 |
+
variant=unet_additional_kwargs['variant'],
|
156 |
+
use_temporal=True if not is_image else False,
|
157 |
+
temp_pos_embedding=unet_additional_kwargs['temp_pos_embedding'],
|
158 |
+
augment_temporal_attention=unet_additional_kwargs['augment_temporal_attention'],
|
159 |
+
n_frames=train_data.sample_n_frames if not is_image else 2,
|
160 |
+
n_temp_heads=unet_additional_kwargs['n_temp_heads'],
|
161 |
+
first_frame_condition_mode=unet_additional_kwargs['first_frame_condition_mode'],
|
162 |
+
use_frame_stride_condition=unet_additional_kwargs['use_frame_stride_condition'],
|
163 |
+
use_safetensors=True
|
164 |
+
)
|
165 |
+
|
166 |
+
# Freeze vae and text_encoder
|
167 |
+
vae.requires_grad_(False)
|
168 |
+
text_encoder.requires_grad_(False)
|
169 |
+
unet.train()
|
170 |
+
|
171 |
+
if use_ema:
|
172 |
+
ema_unet = VideoLDMUNet3DConditionModel.from_pretrained(
|
173 |
+
pretrained_model_path,
|
174 |
+
subfolder="unet",
|
175 |
+
variant=unet_additional_kwargs['variant'],
|
176 |
+
use_temporal=True if not is_image else False,
|
177 |
+
temp_pos_embedding=unet_additional_kwargs['temp_pos_embedding'],
|
178 |
+
augment_temporal_attention=unet_additional_kwargs['augment_temporal_attention'],
|
179 |
+
n_frames=train_data.sample_n_frames if not is_image else 2,
|
180 |
+
n_temp_heads=unet_additional_kwargs['n_temp_heads'],
|
181 |
+
first_frame_condition_mode=unet_additional_kwargs['first_frame_condition_mode'],
|
182 |
+
use_frame_stride_condition=unet_additional_kwargs['use_frame_stride_condition'],
|
183 |
+
use_safetensors=True
|
184 |
+
)
|
185 |
+
ema_unet = EMAModel(ema_unet.parameters(), decay=ema_decay, model_cls=VideoLDMUNet3DConditionModel, model_config=ema_unet.config)
|
186 |
+
|
187 |
+
# Set unet trainable parameters
|
188 |
+
train_all_parameters = False
|
189 |
+
for trainable_module_name in trainable_modules:
|
190 |
+
if trainable_module_name == 'all':
|
191 |
+
unet.requires_grad_(True)
|
192 |
+
train_all_parameters = True
|
193 |
+
break
|
194 |
+
|
195 |
+
if not train_all_parameters:
|
196 |
+
unet.requires_grad_(False)
|
197 |
+
for name, param in unet.named_parameters():
|
198 |
+
for trainable_module_name in trainable_modules:
|
199 |
+
if trainable_module_name in name:
|
200 |
+
param.requires_grad = True
|
201 |
+
break
|
202 |
+
|
203 |
+
# Enable xformers
|
204 |
+
if enable_xformers_memory_efficient_attention and int(torch.__version__.split(".")[0]) < 2:
|
205 |
+
if is_xformers_available():
|
206 |
+
unet.enable_xformers_memory_efficient_attention()
|
207 |
+
else:
|
208 |
+
raise ValueError("xformers is not available. Make sure it is installed correctly")
|
209 |
+
|
210 |
+
def save_model_hook(models, weights, output_dir):
|
211 |
+
if accelerator.is_main_process:
|
212 |
+
if use_ema:
|
213 |
+
ema_unet.save_pretrained(os.path.join(output_dir, "unet_ema"))
|
214 |
+
|
215 |
+
for i, model in enumerate(models):
|
216 |
+
model.save_pretrained(os.path.join(output_dir, "unet"))
|
217 |
+
|
218 |
+
# make sure to pop weight so that corresponding model is not saved again
|
219 |
+
weights.pop()
|
220 |
+
|
221 |
+
def load_model_hook(models, input_dir):
|
222 |
+
if use_ema:
|
223 |
+
load_model = EMAModel.from_pretrained(os.path.join(input_dir, "unet_ema"), VideoLDMUNet3DConditionModel)
|
224 |
+
ema_unet.load_state_dict(load_model.state_dict())
|
225 |
+
ema_unet.to(accelerator.device)
|
226 |
+
del load_model
|
227 |
+
|
228 |
+
for i in range(len(models)):
|
229 |
+
# pop models so that they are not loaded again
|
230 |
+
model = models.pop()
|
231 |
+
|
232 |
+
# load diffusers style into model
|
233 |
+
load_model = VideoLDMUNet3DConditionModel.from_pretrained(input_dir, subfolder="unet")
|
234 |
+
model.register_to_config(**load_model.config)
|
235 |
+
|
236 |
+
model.load_state_dict(load_model.state_dict())
|
237 |
+
del load_model
|
238 |
+
|
239 |
+
accelerator.register_save_state_pre_hook(save_model_hook)
|
240 |
+
accelerator.register_load_state_pre_hook(load_model_hook)
|
241 |
+
|
242 |
+
# Enable gradient checkpointing
|
243 |
+
if gradient_checkpointing:
|
244 |
+
unet.enable_gradient_checkpointing()
|
245 |
+
|
246 |
+
if scale_lr:
|
247 |
+
learning_rate = (learning_rate * gradient_accumulation_steps * train_batch_size * accelerator.num_processes)
|
248 |
+
|
249 |
+
trainable_params = list(filter(lambda p: p.requires_grad, unet.parameters()))
|
250 |
+
optimizer = torch.optim.AdamW(
|
251 |
+
trainable_params,
|
252 |
+
lr=learning_rate,
|
253 |
+
betas=(adam_beta1, adam_beta2),
|
254 |
+
weight_decay=adam_weight_decay,
|
255 |
+
eps=adam_epsilon,
|
256 |
+
)
|
257 |
+
|
258 |
+
logger.info(f"trainable params number: {len(trainable_params)}")
|
259 |
+
logger.info(f"trainable params scale: {sum(p.numel() for p in trainable_params) / 1e6:.3f} M")
|
260 |
+
|
261 |
+
# Get the training dataset
|
262 |
+
if train_data['dataset'] == "webvid":
|
263 |
+
train_dataset = WebVid10M(**train_data, is_image=is_image)
|
264 |
+
elif train_data['dataset'] == "pexels":
|
265 |
+
train_dataset = Pexels(**train_data, is_image=is_image)
|
266 |
+
elif train_data['dataset'] == "joint":
|
267 |
+
train_dataset = JointDataset(**train_data, is_image=is_image)
|
268 |
+
else:
|
269 |
+
raise ValueError(f"Unknown dataset {train_data['dataset']}")
|
270 |
+
|
271 |
+
# DataLoaders creation:
|
272 |
+
train_dataloader = torch.utils.data.DataLoader(
|
273 |
+
train_dataset,
|
274 |
+
shuffle=True,
|
275 |
+
batch_size=train_batch_size,
|
276 |
+
num_workers=num_workers,
|
277 |
+
pin_memory=True,
|
278 |
+
)
|
279 |
+
|
280 |
+
# Get the training iteration
|
281 |
+
if max_train_steps == -1:
|
282 |
+
assert max_train_epoch != -1
|
283 |
+
max_train_steps = max_train_epoch * len(train_dataloader)
|
284 |
+
|
285 |
+
if checkpointing_steps == -1:
|
286 |
+
assert checkpointing_epochs != -1
|
287 |
+
checkpointing_steps = checkpointing_epochs * len(train_dataloader)
|
288 |
+
|
289 |
+
# Scheduler
|
290 |
+
lr_scheduler = get_scheduler(
|
291 |
+
lr_scheduler,
|
292 |
+
optimizer=optimizer,
|
293 |
+
num_warmup_steps=lr_warmup_steps * gradient_accumulation_steps,
|
294 |
+
num_training_steps=max_train_steps * gradient_accumulation_steps,
|
295 |
+
)
|
296 |
+
|
297 |
+
# Validation pipeline
|
298 |
+
validation_pipeline = ConditionalAnimationPipeline(
|
299 |
+
unet=unet, vae=vae, tokenizer=tokenizer, text_encoder=text_encoder, scheduler=noise_scheduler,
|
300 |
+
)
|
301 |
+
validation_pipeline.enable_vae_slicing()
|
302 |
+
|
303 |
+
# Prepare everything with our `accelerator`.
|
304 |
+
unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
|
305 |
+
unet, optimizer, train_dataloader, lr_scheduler
|
306 |
+
)
|
307 |
+
|
308 |
+
# For mixed precision training we cast the text_encoder and vae weights to half-precision
|
309 |
+
# as these models are only used for inference, keeping weights in full precision is not required.
|
310 |
+
weight_dtype = torch.float32
|
311 |
+
if accelerator.mixed_precision == "fp16":
|
312 |
+
weight_dtype = torch.float16
|
313 |
+
elif accelerator.mixed_precision == "bf16":
|
314 |
+
weight_dtype = torch.bfloat16
|
315 |
+
|
316 |
+
if use_ema:
|
317 |
+
ema_unet.to(accelerator.device)
|
318 |
+
|
319 |
+
# Move text_encode and vae to gpu and cast to weight_dtype
|
320 |
+
text_encoder.to(accelerator.device, dtype=weight_dtype)
|
321 |
+
vae.to(accelerator.device, dtype=weight_dtype)
|
322 |
+
|
323 |
+
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
|
324 |
+
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / gradient_accumulation_steps)
|
325 |
+
# Afterwards we recalculate our number of training epochs
|
326 |
+
num_train_epochs = math.ceil(max_train_steps / num_update_steps_per_epoch)
|
327 |
+
|
328 |
+
# Train!
|
329 |
+
total_batch_size = train_batch_size * accelerator.num_processes * gradient_accumulation_steps
|
330 |
+
|
331 |
+
logger.info("***** Running training *****")
|
332 |
+
logger.info(f" Num examples = {len(train_dataset)}")
|
333 |
+
logger.info(f" Num Epochs = {num_train_epochs}")
|
334 |
+
logger.info(f" Instantaneous batch size per device = {train_batch_size}")
|
335 |
+
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
|
336 |
+
logger.info(f" Gradient Accumulation steps = {gradient_accumulation_steps}")
|
337 |
+
logger.info(f" Total optimization steps = {max_train_steps}")
|
338 |
+
|
339 |
+
global_step = 0
|
340 |
+
first_epoch = 0
|
341 |
+
|
342 |
+
# Load pretrained unet weights
|
343 |
+
if resume_from_checkpoint is not None:
|
344 |
+
logger.info(f"Resuming from checkpoint: {resume_from_checkpoint}")
|
345 |
+
accelerator.load_state(resume_from_checkpoint)
|
346 |
+
global_step = int(resume_from_checkpoint.split("-")[-1])
|
347 |
+
|
348 |
+
initial_global_step = global_step
|
349 |
+
first_epoch = global_step // num_update_steps_per_epoch
|
350 |
+
logger.info(f"global_step: {global_step}")
|
351 |
+
logger.info(f"first_epoch: {first_epoch}")
|
352 |
+
else:
|
353 |
+
initial_global_step = 0
|
354 |
+
|
355 |
+
# Only show the progress bar once on each machine.
|
356 |
+
progress_bar = tqdm(range(0, max_train_steps), initial=initial_global_step, desc="Steps", disable=not accelerator.is_main_process)
|
357 |
+
|
358 |
+
for epoch in range(first_epoch, num_train_epochs):
|
359 |
+
train_loss = 0.0
|
360 |
+
train_grad_norm = 0.0
|
361 |
+
data_loading_time = 0.0
|
362 |
+
prepare_everything_time = 0.0
|
363 |
+
network_forward_time = 0.0
|
364 |
+
network_backward_time = 0.0
|
365 |
+
|
366 |
+
t0 = time.time()
|
367 |
+
for step, batch in enumerate(train_dataloader):
|
368 |
+
t1 = time.time()
|
369 |
+
if cfg_random_null_text_ratio > 0.0:
|
370 |
+
batch['text'] = [name if random.random() > cfg_random_null_text_ratio else "" for name in batch['text']]
|
371 |
+
|
372 |
+
# Data batch sanity check
|
373 |
+
if accelerator.is_main_process and epoch == first_epoch and step == 0:
|
374 |
+
pixel_values, texts = batch['pixel_values'].cpu(), batch['text']
|
375 |
+
pixel_values = rearrange(pixel_values, "b f c h w -> b c f h w")
|
376 |
+
for idx, (pixel_value, text) in enumerate(zip(pixel_values, texts)):
|
377 |
+
pixel_value = pixel_value[None, ...]
|
378 |
+
save_videos_grid(pixel_value, f"{output_dir}/sanity_check/{'-'.join(text.replace('/', '').split()[:10]) if not text == '' else f'no_text-{idx}'}.gif", rescale=True)
|
379 |
+
|
380 |
+
### >>>> Training >>>> ###
|
381 |
+
with accelerator.accumulate(unet):
|
382 |
+
# Convert videos to latent space
|
383 |
+
pixel_values = batch["pixel_values"].to(weight_dtype)
|
384 |
+
video_length = pixel_values.shape[1]
|
385 |
+
pixel_values = rearrange(pixel_values, "b f c h w -> (b f) c h w")
|
386 |
+
latents = vae.encode(pixel_values).latent_dist
|
387 |
+
latents = latents.sample()
|
388 |
+
latents = rearrange(latents, "(b f) c h w -> b c f h w", f=video_length)
|
389 |
+
|
390 |
+
latents = latents * vae.config.scaling_factor
|
391 |
+
|
392 |
+
if unet_additional_kwargs["first_frame_condition_mode"] != "none":
|
393 |
+
# Get first frame latents
|
394 |
+
first_frame_latents = latents[:, :, 0:1, :, :]
|
395 |
+
|
396 |
+
# Sample noise that we'll add to the latents
|
397 |
+
if unet_additional_kwargs['noise_sampling_method'] == 'vanilla':
|
398 |
+
noise = torch.randn_like(latents)
|
399 |
+
elif unet_additional_kwargs['noise_sampling_method'] == 'pyoco_mixed':
|
400 |
+
noise_alpha_squared = float(unet_additional_kwargs['noise_alpha']) ** 2
|
401 |
+
shared_noise = torch.randn_like(latents[:, :, 0:1, :, :]) * math.sqrt((noise_alpha_squared) / (1 + noise_alpha_squared))
|
402 |
+
ind_noise = torch.randn_like(latents) * math.sqrt(1 / (1 + noise_alpha_squared))
|
403 |
+
noise = shared_noise + ind_noise
|
404 |
+
elif unet_additional_kwargs['noise_sampling_method'] == 'pyoco_progressive':
|
405 |
+
noise_alpha_squared = float(unet_additional_kwargs['noise_alpha']) ** 2
|
406 |
+
noise = torch.randn_like(latents)
|
407 |
+
ind_noise = torch.randn_like(latents) * math.sqrt(1 / (1 + noise_alpha_squared))
|
408 |
+
for i in range(1, noise.shape[2]):
|
409 |
+
noise[:, :, i, :, :] = noise[:, :, i - 1, :, :] * math.sqrt((noise_alpha_squared) / (1 + noise_alpha_squared)) + ind_noise[:, :, i, :, :]
|
410 |
+
else:
|
411 |
+
raise ValueError(f"Unknown noise sampling method {unet_additional_kwargs['noise_sampling_method']}")
|
412 |
+
|
413 |
+
bsz = latents.shape[0]
|
414 |
+
|
415 |
+
# Sample a random timestep for each video
|
416 |
+
timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device)
|
417 |
+
timesteps = timesteps.long()
|
418 |
+
|
419 |
+
# Add noise to the latents according to the noise magnitude at each timestep
|
420 |
+
# (this is the forward diffusion process)
|
421 |
+
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
|
422 |
+
|
423 |
+
if cfg_random_null_img_ratio > 0.0:
|
424 |
+
for i in range(first_frame_latents.shape[0]):
|
425 |
+
if random.random() <= cfg_random_null_img_ratio:
|
426 |
+
first_frame_latents[i, :, :, :, :] = noisy_latents[i, :, 0:1, :, :]
|
427 |
+
|
428 |
+
# Remove the first noisy latent from the latents if we're conditioning on the first frame
|
429 |
+
if unet_additional_kwargs["first_frame_condition_mode"] != "none":
|
430 |
+
noisy_latents = noisy_latents[:, :, 1:, :, :]
|
431 |
+
|
432 |
+
# Get the text embedding for conditioning
|
433 |
+
prompt_ids = tokenizer(
|
434 |
+
batch['text'], max_length=tokenizer.model_max_length, padding="max_length", truncation=True, return_tensors="pt"
|
435 |
+
).input_ids.to(latents.device)
|
436 |
+
encoder_hidden_states = text_encoder(prompt_ids)[0]
|
437 |
+
|
438 |
+
# Get the target for loss depending on the prediction type
|
439 |
+
if noise_scheduler.config.prediction_type == "epsilon":
|
440 |
+
target = noise
|
441 |
+
elif noise_scheduler.config.prediction_type == "v_prediction":
|
442 |
+
target = noise_scheduler.get_velocity(latents, noise, timesteps)
|
443 |
+
else:
|
444 |
+
raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}")
|
445 |
+
|
446 |
+
timesteps = repeat(timesteps, "b -> b f", f=video_length)
|
447 |
+
timesteps = rearrange(timesteps, "b f -> (b f)")
|
448 |
+
|
449 |
+
frame_stride = None
|
450 |
+
if unet_additional_kwargs["use_frame_stride_condition"]:
|
451 |
+
frame_stride = batch['stride'].to(latents.device)
|
452 |
+
frame_stride = frame_stride.long()
|
453 |
+
frame_stride = repeat(frame_stride, "b -> b f", f=video_length)
|
454 |
+
frame_stride = rearrange(frame_stride, "b f -> (b f)")
|
455 |
+
|
456 |
+
t2 = time.time()
|
457 |
+
|
458 |
+
# Predict the noise residual and compute loss
|
459 |
+
if unet_additional_kwargs["first_frame_condition_mode"] != "none":
|
460 |
+
model_pred = unet(noisy_latents, timesteps, encoder_hidden_states, first_frame_latents=first_frame_latents, frame_stride=frame_stride).sample
|
461 |
+
loss = F.mse_loss(model_pred.float(), target.float()[:, :, 1:, :, :], reduction="mean")
|
462 |
+
else:
|
463 |
+
model_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample
|
464 |
+
loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")
|
465 |
+
|
466 |
+
t3 = time.time()
|
467 |
+
|
468 |
+
avg_loss = accelerator.gather(loss.repeat(train_batch_size)).mean()
|
469 |
+
train_loss += avg_loss.item() / gradient_accumulation_steps
|
470 |
+
|
471 |
+
# Backpropagate
|
472 |
+
accelerator.backward(loss)
|
473 |
+
if accelerator.sync_gradients:
|
474 |
+
grad_norm = accelerator.clip_grad_norm_(unet.parameters(), max_grad_norm)
|
475 |
+
avg_grad_norm = accelerator.gather(grad_norm.repeat(train_batch_size)).mean()
|
476 |
+
train_grad_norm += avg_grad_norm.item() / gradient_accumulation_steps
|
477 |
+
|
478 |
+
optimizer.step()
|
479 |
+
lr_scheduler.step()
|
480 |
+
optimizer.zero_grad()
|
481 |
+
|
482 |
+
t4 = time.time()
|
483 |
+
|
484 |
+
data_loading_time += (t1 - t0) / gradient_accumulation_steps
|
485 |
+
prepare_everything_time += (t2 - t1) / gradient_accumulation_steps
|
486 |
+
network_forward_time += (t3 - t2) / gradient_accumulation_steps
|
487 |
+
network_backward_time += (t4 - t3) / gradient_accumulation_steps
|
488 |
+
|
489 |
+
t0 = time.time()
|
490 |
+
|
491 |
+
### <<<< Training <<<< ###
|
492 |
+
|
493 |
+
# Checks if the accelerator has performed an optimization step behind the scenes
|
494 |
+
if accelerator.sync_gradients:
|
495 |
+
if use_ema:
|
496 |
+
ema_unet.step(unet.parameters())
|
497 |
+
progress_bar.update(1)
|
498 |
+
global_step += 1
|
499 |
+
|
500 |
+
# Wandb logging
|
501 |
+
if accelerator.is_main_process and (not is_debug) and use_wandb:
|
502 |
+
wandb.log({"metrics/train_loss": train_loss}, step=global_step)
|
503 |
+
wandb.log({"metrics/train_grad_norm": train_grad_norm}, step=global_step)
|
504 |
+
|
505 |
+
wandb.log({"profiling/train_data_loading_time": data_loading_time}, step=global_step)
|
506 |
+
wandb.log({"profiling/train_prepare_everything_time": prepare_everything_time}, step=global_step)
|
507 |
+
wandb.log({"profiling/train_network_forward_time": network_forward_time}, step=global_step)
|
508 |
+
wandb.log({"profiling/train_network_backward_time": network_backward_time}, step=global_step)
|
509 |
+
# accelerator.log({"train_loss": train_loss}, step=global_step)
|
510 |
+
train_loss = 0.0
|
511 |
+
train_grad_norm = 0.0
|
512 |
+
data_loading_time = 0.0
|
513 |
+
prepare_everything_time = 0.0
|
514 |
+
network_forward_time = 0.0
|
515 |
+
network_backward_time = 0.0
|
516 |
+
|
517 |
+
# Save checkpoint
|
518 |
+
if global_step % checkpointing_steps == 0:
|
519 |
+
if accelerator.is_main_process:
|
520 |
+
save_path = os.path.join(output_dir, f"checkpoints/checkpoint-{global_step}")
|
521 |
+
accelerator.save_state(save_path)
|
522 |
+
logger.info(f"Saved state to {save_path} (global_step: {global_step})")
|
523 |
+
|
524 |
+
# Periodically validation
|
525 |
+
if accelerator.is_main_process and global_step % validation_steps == 0:
|
526 |
+
if use_ema:
|
527 |
+
# Store the UNet parameters temporarily and load the EMA parameters to perform inference.
|
528 |
+
ema_unet.store(unet.parameters())
|
529 |
+
ema_unet.copy_to(unet.parameters())
|
530 |
+
|
531 |
+
samples = []
|
532 |
+
wandb_samples = []
|
533 |
+
|
534 |
+
generator = torch.Generator(device=latents.device)
|
535 |
+
generator.manual_seed(seed)
|
536 |
+
|
537 |
+
height = train_data.sample_size[0] if not isinstance(train_data.sample_size, int) else train_data.sample_size
|
538 |
+
width = train_data.sample_size[1] if not isinstance(train_data.sample_size, int) else train_data.sample_size
|
539 |
+
|
540 |
+
prompts = validation_data.prompts
|
541 |
+
|
542 |
+
first_frame_paths = [None] * len(prompts)
|
543 |
+
if unet_additional_kwargs["first_frame_condition_mode"] != "none":
|
544 |
+
first_frame_paths = validation_data.path_to_first_frames
|
545 |
+
|
546 |
+
for idx, (prompt, first_frame_path) in enumerate(zip(prompts, first_frame_paths)):
|
547 |
+
sample = validation_pipeline(
|
548 |
+
prompt,
|
549 |
+
generator = generator,
|
550 |
+
video_length = train_data.sample_n_frames if not is_image else 2,
|
551 |
+
height = height,
|
552 |
+
width = width,
|
553 |
+
first_frame_paths = first_frame_path,
|
554 |
+
noise_sampling_method = unet_additional_kwargs['noise_sampling_method'],
|
555 |
+
noise_alpha = float(unet_additional_kwargs['noise_alpha']),
|
556 |
+
**validation_data,
|
557 |
+
).videos
|
558 |
+
save_videos_grid(sample, f"{output_dir}/samples/sample-{global_step}/{idx}.gif")
|
559 |
+
samples.append(sample)
|
560 |
+
|
561 |
+
numpy_sample = (sample.squeeze(0).permute(1, 0, 2, 3) * 255).cpu().numpy().astype(np.uint8)
|
562 |
+
wandb_video = wandb.Video(numpy_sample, fps=8, caption=prompt)
|
563 |
+
wandb_samples.append(wandb_video)
|
564 |
+
|
565 |
+
if (not is_debug) and use_wandb:
|
566 |
+
val_title = 'val_videos'
|
567 |
+
wandb.log({val_title: wandb_samples}, step=global_step)
|
568 |
+
|
569 |
+
samples = torch.concat(samples)
|
570 |
+
save_path = f"{output_dir}/samples/sample-{global_step}.gif"
|
571 |
+
save_videos_grid(samples, save_path)
|
572 |
+
|
573 |
+
logger.info(f"Saved samples to {save_path}")
|
574 |
+
|
575 |
+
if use_ema:
|
576 |
+
# Switch back to the original UNet parameters.
|
577 |
+
ema_unet.restore(unet.parameters())
|
578 |
+
|
579 |
+
logs = {"step_loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]}
|
580 |
+
progress_bar.set_postfix(**logs)
|
581 |
+
|
582 |
+
if accelerator.is_main_process and (not is_debug) and use_wandb:
|
583 |
+
wandb.log({"metrics/train_lr": lr_scheduler.get_last_lr()[0]}, step=global_step)
|
584 |
+
|
585 |
+
if global_step >= max_train_steps:
|
586 |
+
break
|
587 |
+
|
588 |
+
# Create the pipeline using the trained modules and save it.
|
589 |
+
accelerator.wait_for_everyone()
|
590 |
+
if accelerator.is_main_process:
|
591 |
+
unet = accelerator.unwrap_model(unet)
|
592 |
+
pipeline = ConditionalAnimationPipeline(
|
593 |
+
text_encoder=text_encoder,
|
594 |
+
vae=vae,
|
595 |
+
unet=unet,
|
596 |
+
tokenizer=tokenizer,
|
597 |
+
scheduler=noise_scheduler,
|
598 |
+
)
|
599 |
+
pipeline.save_pretrained(f"{output_dir}/final_checkpoint")
|
600 |
+
|
601 |
+
|
602 |
+
if __name__ == "__main__":
|
603 |
+
parser = argparse.ArgumentParser()
|
604 |
+
parser.add_argument("--config", type=str, required=True)
|
605 |
+
parser.add_argument("--name", "-n", type=str, default="")
|
606 |
+
parser.add_argument("--wandb", action="store_true")
|
607 |
+
parser.add_argument("optional_args", nargs='*', default=[])
|
608 |
+
args = parser.parse_args()
|
609 |
+
|
610 |
+
name = args.name + "_" + Path(args.config).stem
|
611 |
+
config = OmegaConf.load(args.config)
|
612 |
+
|
613 |
+
if args.optional_args:
|
614 |
+
modified_config = OmegaConf.from_dotlist(args.optional_args)
|
615 |
+
config = OmegaConf.merge(config, modified_config)
|
616 |
+
|
617 |
+
main(name=name, use_wandb=args.wandb, **config)
|