lixiang46
commited on
Commit
•
3ad3d31
1
Parent(s):
7132521
add pose
Browse files- .gitattributes +2 -0
- annotator/dwpose/__init__.py +91 -0
- annotator/dwpose/onnxdet.py +125 -0
- annotator/dwpose/onnxpose.py +360 -0
- annotator/dwpose/util.py +297 -0
- annotator/dwpose/wholebody.py +49 -0
- app.py +79 -1
- image/woman_3.png +3 -0
- image/woman_4.png +3 -0
.gitattributes
CHANGED
@@ -37,3 +37,5 @@ image/bird.png filter=lfs diff=lfs merge=lfs -text
|
|
37 |
image/dog.png filter=lfs diff=lfs merge=lfs -text
|
38 |
image/woman_1.png filter=lfs diff=lfs merge=lfs -text
|
39 |
image/woman_2.png filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
37 |
image/dog.png filter=lfs diff=lfs merge=lfs -text
|
38 |
image/woman_1.png filter=lfs diff=lfs merge=lfs -text
|
39 |
image/woman_2.png filter=lfs diff=lfs merge=lfs -text
|
40 |
+
image/woman_4.png filter=lfs diff=lfs merge=lfs -text
|
41 |
+
image/woman_3.png filter=lfs diff=lfs merge=lfs -text
|
annotator/dwpose/__init__.py
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Openpose
|
2 |
+
# Original from CMU https://github.com/CMU-Perceptual-Computing-Lab/openpose
|
3 |
+
# 2nd Edited by https://github.com/Hzzone/pytorch-openpose
|
4 |
+
# 3rd Edited by ControlNet
|
5 |
+
# 4th Edited by ControlNet (added face and correct hands)
|
6 |
+
|
7 |
+
import os
|
8 |
+
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"
|
9 |
+
|
10 |
+
import torch
|
11 |
+
import numpy as np
|
12 |
+
from . import util
|
13 |
+
from .wholebody import Wholebody
|
14 |
+
|
15 |
+
def draw_pose(pose, H, W):
|
16 |
+
bodies = pose['bodies']
|
17 |
+
faces = pose['faces']
|
18 |
+
hands = pose['hands']
|
19 |
+
candidate = bodies['candidate']
|
20 |
+
subset = bodies['subset']
|
21 |
+
canvas = np.zeros(shape=(H, W, 3), dtype=np.uint8)
|
22 |
+
|
23 |
+
canvas = util.draw_bodypose(canvas, candidate, subset)
|
24 |
+
|
25 |
+
canvas = util.draw_handpose(canvas, hands)
|
26 |
+
|
27 |
+
# canvas = util.draw_facepose(canvas, faces)
|
28 |
+
|
29 |
+
return canvas
|
30 |
+
|
31 |
+
|
32 |
+
class DWposeDetector:
|
33 |
+
def __init__(self):
|
34 |
+
|
35 |
+
self.pose_estimation = Wholebody()
|
36 |
+
|
37 |
+
|
38 |
+
def getres(self, oriImg):
|
39 |
+
out_res = {}
|
40 |
+
oriImg = oriImg.copy()
|
41 |
+
H, W, C = oriImg.shape
|
42 |
+
with torch.no_grad():
|
43 |
+
candidate, subset = self.pose_estimation(oriImg)
|
44 |
+
out_res['candidate']=candidate
|
45 |
+
out_res['subset']=subset
|
46 |
+
out_res['width']=W
|
47 |
+
out_res['height']=H
|
48 |
+
return out_res
|
49 |
+
|
50 |
+
def __call__(self, oriImg):
|
51 |
+
|
52 |
+
oriImg = oriImg.copy()
|
53 |
+
H, W, C = oriImg.shape
|
54 |
+
with torch.no_grad():
|
55 |
+
_candidate, _subset = self.pose_estimation(oriImg)
|
56 |
+
|
57 |
+
subset = _subset.copy()
|
58 |
+
candidate = _candidate.copy()
|
59 |
+
nums, keys, locs = candidate.shape
|
60 |
+
candidate[..., 0] /= float(W)
|
61 |
+
candidate[..., 1] /= float(H)
|
62 |
+
body = candidate[:,:18].copy()
|
63 |
+
body = body.reshape(nums*18, locs)
|
64 |
+
score = subset[:,:18]
|
65 |
+
for i in range(len(score)):
|
66 |
+
for j in range(len(score[i])):
|
67 |
+
if score[i][j] > 0.3:
|
68 |
+
score[i][j] = int(18*i+j)
|
69 |
+
else:
|
70 |
+
score[i][j] = -1
|
71 |
+
|
72 |
+
un_visible = subset<0.3
|
73 |
+
candidate[un_visible] = -1
|
74 |
+
|
75 |
+
foot = candidate[:,18:24]
|
76 |
+
|
77 |
+
faces = candidate[:,24:92]
|
78 |
+
|
79 |
+
hands = candidate[:,92:113]
|
80 |
+
hands = np.vstack([hands, candidate[:,113:]])
|
81 |
+
|
82 |
+
bodies = dict(candidate=body, subset=score)
|
83 |
+
pose = dict(bodies=bodies, hands=hands, faces=faces)
|
84 |
+
|
85 |
+
out_res = {}
|
86 |
+
out_res['candidate']=candidate
|
87 |
+
out_res['subset']=subset
|
88 |
+
out_res['width']=W
|
89 |
+
out_res['height']=H
|
90 |
+
|
91 |
+
return out_res,draw_pose(pose, H, W)
|
annotator/dwpose/onnxdet.py
ADDED
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import numpy as np
|
3 |
+
|
4 |
+
import onnxruntime
|
5 |
+
|
6 |
+
def nms(boxes, scores, nms_thr):
|
7 |
+
"""Single class NMS implemented in Numpy."""
|
8 |
+
x1 = boxes[:, 0]
|
9 |
+
y1 = boxes[:, 1]
|
10 |
+
x2 = boxes[:, 2]
|
11 |
+
y2 = boxes[:, 3]
|
12 |
+
|
13 |
+
areas = (x2 - x1 + 1) * (y2 - y1 + 1)
|
14 |
+
order = scores.argsort()[::-1]
|
15 |
+
|
16 |
+
keep = []
|
17 |
+
while order.size > 0:
|
18 |
+
i = order[0]
|
19 |
+
keep.append(i)
|
20 |
+
xx1 = np.maximum(x1[i], x1[order[1:]])
|
21 |
+
yy1 = np.maximum(y1[i], y1[order[1:]])
|
22 |
+
xx2 = np.minimum(x2[i], x2[order[1:]])
|
23 |
+
yy2 = np.minimum(y2[i], y2[order[1:]])
|
24 |
+
|
25 |
+
w = np.maximum(0.0, xx2 - xx1 + 1)
|
26 |
+
h = np.maximum(0.0, yy2 - yy1 + 1)
|
27 |
+
inter = w * h
|
28 |
+
ovr = inter / (areas[i] + areas[order[1:]] - inter)
|
29 |
+
|
30 |
+
inds = np.where(ovr <= nms_thr)[0]
|
31 |
+
order = order[inds + 1]
|
32 |
+
|
33 |
+
return keep
|
34 |
+
|
35 |
+
def multiclass_nms(boxes, scores, nms_thr, score_thr):
|
36 |
+
"""Multiclass NMS implemented in Numpy. Class-aware version."""
|
37 |
+
final_dets = []
|
38 |
+
num_classes = scores.shape[1]
|
39 |
+
for cls_ind in range(num_classes):
|
40 |
+
cls_scores = scores[:, cls_ind]
|
41 |
+
valid_score_mask = cls_scores > score_thr
|
42 |
+
if valid_score_mask.sum() == 0:
|
43 |
+
continue
|
44 |
+
else:
|
45 |
+
valid_scores = cls_scores[valid_score_mask]
|
46 |
+
valid_boxes = boxes[valid_score_mask]
|
47 |
+
keep = nms(valid_boxes, valid_scores, nms_thr)
|
48 |
+
if len(keep) > 0:
|
49 |
+
cls_inds = np.ones((len(keep), 1)) * cls_ind
|
50 |
+
dets = np.concatenate(
|
51 |
+
[valid_boxes[keep], valid_scores[keep, None], cls_inds], 1
|
52 |
+
)
|
53 |
+
final_dets.append(dets)
|
54 |
+
if len(final_dets) == 0:
|
55 |
+
return None
|
56 |
+
return np.concatenate(final_dets, 0)
|
57 |
+
|
58 |
+
def demo_postprocess(outputs, img_size, p6=False):
|
59 |
+
grids = []
|
60 |
+
expanded_strides = []
|
61 |
+
strides = [8, 16, 32] if not p6 else [8, 16, 32, 64]
|
62 |
+
|
63 |
+
hsizes = [img_size[0] // stride for stride in strides]
|
64 |
+
wsizes = [img_size[1] // stride for stride in strides]
|
65 |
+
|
66 |
+
for hsize, wsize, stride in zip(hsizes, wsizes, strides):
|
67 |
+
xv, yv = np.meshgrid(np.arange(wsize), np.arange(hsize))
|
68 |
+
grid = np.stack((xv, yv), 2).reshape(1, -1, 2)
|
69 |
+
grids.append(grid)
|
70 |
+
shape = grid.shape[:2]
|
71 |
+
expanded_strides.append(np.full((*shape, 1), stride))
|
72 |
+
|
73 |
+
grids = np.concatenate(grids, 1)
|
74 |
+
expanded_strides = np.concatenate(expanded_strides, 1)
|
75 |
+
outputs[..., :2] = (outputs[..., :2] + grids) * expanded_strides
|
76 |
+
outputs[..., 2:4] = np.exp(outputs[..., 2:4]) * expanded_strides
|
77 |
+
|
78 |
+
return outputs
|
79 |
+
|
80 |
+
def preprocess(img, input_size, swap=(2, 0, 1)):
|
81 |
+
if len(img.shape) == 3:
|
82 |
+
padded_img = np.ones((input_size[0], input_size[1], 3), dtype=np.uint8) * 114
|
83 |
+
else:
|
84 |
+
padded_img = np.ones(input_size, dtype=np.uint8) * 114
|
85 |
+
|
86 |
+
r = min(input_size[0] / img.shape[0], input_size[1] / img.shape[1])
|
87 |
+
resized_img = cv2.resize(
|
88 |
+
img,
|
89 |
+
(int(img.shape[1] * r), int(img.shape[0] * r)),
|
90 |
+
interpolation=cv2.INTER_LINEAR,
|
91 |
+
).astype(np.uint8)
|
92 |
+
padded_img[: int(img.shape[0] * r), : int(img.shape[1] * r)] = resized_img
|
93 |
+
|
94 |
+
padded_img = padded_img.transpose(swap)
|
95 |
+
padded_img = np.ascontiguousarray(padded_img, dtype=np.float32)
|
96 |
+
return padded_img, r
|
97 |
+
|
98 |
+
def inference_detector(session, oriImg):
|
99 |
+
input_shape = (640,640)
|
100 |
+
img, ratio = preprocess(oriImg, input_shape)
|
101 |
+
|
102 |
+
ort_inputs = {session.get_inputs()[0].name: img[None, :, :, :]}
|
103 |
+
output = session.run(None, ort_inputs)
|
104 |
+
predictions = demo_postprocess(output[0], input_shape)[0]
|
105 |
+
|
106 |
+
boxes = predictions[:, :4]
|
107 |
+
scores = predictions[:, 4:5] * predictions[:, 5:]
|
108 |
+
|
109 |
+
boxes_xyxy = np.ones_like(boxes)
|
110 |
+
boxes_xyxy[:, 0] = boxes[:, 0] - boxes[:, 2]/2.
|
111 |
+
boxes_xyxy[:, 1] = boxes[:, 1] - boxes[:, 3]/2.
|
112 |
+
boxes_xyxy[:, 2] = boxes[:, 0] + boxes[:, 2]/2.
|
113 |
+
boxes_xyxy[:, 3] = boxes[:, 1] + boxes[:, 3]/2.
|
114 |
+
boxes_xyxy /= ratio
|
115 |
+
dets = multiclass_nms(boxes_xyxy, scores, nms_thr=0.45, score_thr=0.1)
|
116 |
+
if dets is not None:
|
117 |
+
final_boxes, final_scores, final_cls_inds = dets[:, :4], dets[:, 4], dets[:, 5]
|
118 |
+
isscore = final_scores>0.3
|
119 |
+
iscat = final_cls_inds == 0
|
120 |
+
isbbox = [ i and j for (i, j) in zip(isscore, iscat)]
|
121 |
+
final_boxes = final_boxes[isbbox]
|
122 |
+
else:
|
123 |
+
final_boxes = np.array([])
|
124 |
+
|
125 |
+
return final_boxes
|
annotator/dwpose/onnxpose.py
ADDED
@@ -0,0 +1,360 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List, Tuple
|
2 |
+
|
3 |
+
import cv2
|
4 |
+
import numpy as np
|
5 |
+
import onnxruntime as ort
|
6 |
+
|
7 |
+
def preprocess(
|
8 |
+
img: np.ndarray, out_bbox, input_size: Tuple[int, int] = (192, 256)
|
9 |
+
) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
|
10 |
+
"""Do preprocessing for RTMPose model inference.
|
11 |
+
|
12 |
+
Args:
|
13 |
+
img (np.ndarray): Input image in shape.
|
14 |
+
input_size (tuple): Input image size in shape (w, h).
|
15 |
+
|
16 |
+
Returns:
|
17 |
+
tuple:
|
18 |
+
- resized_img (np.ndarray): Preprocessed image.
|
19 |
+
- center (np.ndarray): Center of image.
|
20 |
+
- scale (np.ndarray): Scale of image.
|
21 |
+
"""
|
22 |
+
# get shape of image
|
23 |
+
img_shape = img.shape[:2]
|
24 |
+
out_img, out_center, out_scale = [], [], []
|
25 |
+
if len(out_bbox) == 0:
|
26 |
+
out_bbox = [[0, 0, img_shape[1], img_shape[0]]]
|
27 |
+
for i in range(len(out_bbox)):
|
28 |
+
x0 = out_bbox[i][0]
|
29 |
+
y0 = out_bbox[i][1]
|
30 |
+
x1 = out_bbox[i][2]
|
31 |
+
y1 = out_bbox[i][3]
|
32 |
+
bbox = np.array([x0, y0, x1, y1])
|
33 |
+
|
34 |
+
# get center and scale
|
35 |
+
center, scale = bbox_xyxy2cs(bbox, padding=1.25)
|
36 |
+
|
37 |
+
# do affine transformation
|
38 |
+
resized_img, scale = top_down_affine(input_size, scale, center, img)
|
39 |
+
|
40 |
+
# normalize image
|
41 |
+
mean = np.array([123.675, 116.28, 103.53])
|
42 |
+
std = np.array([58.395, 57.12, 57.375])
|
43 |
+
resized_img = (resized_img - mean) / std
|
44 |
+
|
45 |
+
out_img.append(resized_img)
|
46 |
+
out_center.append(center)
|
47 |
+
out_scale.append(scale)
|
48 |
+
|
49 |
+
return out_img, out_center, out_scale
|
50 |
+
|
51 |
+
|
52 |
+
def inference(sess: ort.InferenceSession, img: np.ndarray) -> np.ndarray:
|
53 |
+
"""Inference RTMPose model.
|
54 |
+
|
55 |
+
Args:
|
56 |
+
sess (ort.InferenceSession): ONNXRuntime session.
|
57 |
+
img (np.ndarray): Input image in shape.
|
58 |
+
|
59 |
+
Returns:
|
60 |
+
outputs (np.ndarray): Output of RTMPose model.
|
61 |
+
"""
|
62 |
+
all_out = []
|
63 |
+
# build input
|
64 |
+
for i in range(len(img)):
|
65 |
+
input = [img[i].transpose(2, 0, 1)]
|
66 |
+
|
67 |
+
# build output
|
68 |
+
sess_input = {sess.get_inputs()[0].name: input}
|
69 |
+
sess_output = []
|
70 |
+
for out in sess.get_outputs():
|
71 |
+
sess_output.append(out.name)
|
72 |
+
|
73 |
+
# run model
|
74 |
+
outputs = sess.run(sess_output, sess_input)
|
75 |
+
all_out.append(outputs)
|
76 |
+
|
77 |
+
return all_out
|
78 |
+
|
79 |
+
|
80 |
+
def postprocess(outputs: List[np.ndarray],
|
81 |
+
model_input_size: Tuple[int, int],
|
82 |
+
center: Tuple[int, int],
|
83 |
+
scale: Tuple[int, int],
|
84 |
+
simcc_split_ratio: float = 2.0
|
85 |
+
) -> Tuple[np.ndarray, np.ndarray]:
|
86 |
+
"""Postprocess for RTMPose model output.
|
87 |
+
|
88 |
+
Args:
|
89 |
+
outputs (np.ndarray): Output of RTMPose model.
|
90 |
+
model_input_size (tuple): RTMPose model Input image size.
|
91 |
+
center (tuple): Center of bbox in shape (x, y).
|
92 |
+
scale (tuple): Scale of bbox in shape (w, h).
|
93 |
+
simcc_split_ratio (float): Split ratio of simcc.
|
94 |
+
|
95 |
+
Returns:
|
96 |
+
tuple:
|
97 |
+
- keypoints (np.ndarray): Rescaled keypoints.
|
98 |
+
- scores (np.ndarray): Model predict scores.
|
99 |
+
"""
|
100 |
+
all_key = []
|
101 |
+
all_score = []
|
102 |
+
for i in range(len(outputs)):
|
103 |
+
# use simcc to decode
|
104 |
+
simcc_x, simcc_y = outputs[i]
|
105 |
+
keypoints, scores = decode(simcc_x, simcc_y, simcc_split_ratio)
|
106 |
+
|
107 |
+
# rescale keypoints
|
108 |
+
keypoints = keypoints / model_input_size * scale[i] + center[i] - scale[i] / 2
|
109 |
+
all_key.append(keypoints[0])
|
110 |
+
all_score.append(scores[0])
|
111 |
+
|
112 |
+
return np.array(all_key), np.array(all_score)
|
113 |
+
|
114 |
+
|
115 |
+
def bbox_xyxy2cs(bbox: np.ndarray,
|
116 |
+
padding: float = 1.) -> Tuple[np.ndarray, np.ndarray]:
|
117 |
+
"""Transform the bbox format from (x,y,w,h) into (center, scale)
|
118 |
+
|
119 |
+
Args:
|
120 |
+
bbox (ndarray): Bounding box(es) in shape (4,) or (n, 4), formatted
|
121 |
+
as (left, top, right, bottom)
|
122 |
+
padding (float): BBox padding factor that will be multilied to scale.
|
123 |
+
Default: 1.0
|
124 |
+
|
125 |
+
Returns:
|
126 |
+
tuple: A tuple containing center and scale.
|
127 |
+
- np.ndarray[float32]: Center (x, y) of the bbox in shape (2,) or
|
128 |
+
(n, 2)
|
129 |
+
- np.ndarray[float32]: Scale (w, h) of the bbox in shape (2,) or
|
130 |
+
(n, 2)
|
131 |
+
"""
|
132 |
+
# convert single bbox from (4, ) to (1, 4)
|
133 |
+
dim = bbox.ndim
|
134 |
+
if dim == 1:
|
135 |
+
bbox = bbox[None, :]
|
136 |
+
|
137 |
+
# get bbox center and scale
|
138 |
+
x1, y1, x2, y2 = np.hsplit(bbox, [1, 2, 3])
|
139 |
+
center = np.hstack([x1 + x2, y1 + y2]) * 0.5
|
140 |
+
scale = np.hstack([x2 - x1, y2 - y1]) * padding
|
141 |
+
|
142 |
+
if dim == 1:
|
143 |
+
center = center[0]
|
144 |
+
scale = scale[0]
|
145 |
+
|
146 |
+
return center, scale
|
147 |
+
|
148 |
+
|
149 |
+
def _fix_aspect_ratio(bbox_scale: np.ndarray,
|
150 |
+
aspect_ratio: float) -> np.ndarray:
|
151 |
+
"""Extend the scale to match the given aspect ratio.
|
152 |
+
|
153 |
+
Args:
|
154 |
+
scale (np.ndarray): The image scale (w, h) in shape (2, )
|
155 |
+
aspect_ratio (float): The ratio of ``w/h``
|
156 |
+
|
157 |
+
Returns:
|
158 |
+
np.ndarray: The reshaped image scale in (2, )
|
159 |
+
"""
|
160 |
+
w, h = np.hsplit(bbox_scale, [1])
|
161 |
+
bbox_scale = np.where(w > h * aspect_ratio,
|
162 |
+
np.hstack([w, w / aspect_ratio]),
|
163 |
+
np.hstack([h * aspect_ratio, h]))
|
164 |
+
return bbox_scale
|
165 |
+
|
166 |
+
|
167 |
+
def _rotate_point(pt: np.ndarray, angle_rad: float) -> np.ndarray:
|
168 |
+
"""Rotate a point by an angle.
|
169 |
+
|
170 |
+
Args:
|
171 |
+
pt (np.ndarray): 2D point coordinates (x, y) in shape (2, )
|
172 |
+
angle_rad (float): rotation angle in radian
|
173 |
+
|
174 |
+
Returns:
|
175 |
+
np.ndarray: Rotated point in shape (2, )
|
176 |
+
"""
|
177 |
+
sn, cs = np.sin(angle_rad), np.cos(angle_rad)
|
178 |
+
rot_mat = np.array([[cs, -sn], [sn, cs]])
|
179 |
+
return rot_mat @ pt
|
180 |
+
|
181 |
+
|
182 |
+
def _get_3rd_point(a: np.ndarray, b: np.ndarray) -> np.ndarray:
|
183 |
+
"""To calculate the affine matrix, three pairs of points are required. This
|
184 |
+
function is used to get the 3rd point, given 2D points a & b.
|
185 |
+
|
186 |
+
The 3rd point is defined by rotating vector `a - b` by 90 degrees
|
187 |
+
anticlockwise, using b as the rotation center.
|
188 |
+
|
189 |
+
Args:
|
190 |
+
a (np.ndarray): The 1st point (x,y) in shape (2, )
|
191 |
+
b (np.ndarray): The 2nd point (x,y) in shape (2, )
|
192 |
+
|
193 |
+
Returns:
|
194 |
+
np.ndarray: The 3rd point.
|
195 |
+
"""
|
196 |
+
direction = a - b
|
197 |
+
c = b + np.r_[-direction[1], direction[0]]
|
198 |
+
return c
|
199 |
+
|
200 |
+
|
201 |
+
def get_warp_matrix(center: np.ndarray,
|
202 |
+
scale: np.ndarray,
|
203 |
+
rot: float,
|
204 |
+
output_size: Tuple[int, int],
|
205 |
+
shift: Tuple[float, float] = (0., 0.),
|
206 |
+
inv: bool = False) -> np.ndarray:
|
207 |
+
"""Calculate the affine transformation matrix that can warp the bbox area
|
208 |
+
in the input image to the output size.
|
209 |
+
|
210 |
+
Args:
|
211 |
+
center (np.ndarray[2, ]): Center of the bounding box (x, y).
|
212 |
+
scale (np.ndarray[2, ]): Scale of the bounding box
|
213 |
+
wrt [width, height].
|
214 |
+
rot (float): Rotation angle (degree).
|
215 |
+
output_size (np.ndarray[2, ] | list(2,)): Size of the
|
216 |
+
destination heatmaps.
|
217 |
+
shift (0-100%): Shift translation ratio wrt the width/height.
|
218 |
+
Default (0., 0.).
|
219 |
+
inv (bool): Option to inverse the affine transform direction.
|
220 |
+
(inv=False: src->dst or inv=True: dst->src)
|
221 |
+
|
222 |
+
Returns:
|
223 |
+
np.ndarray: A 2x3 transformation matrix
|
224 |
+
"""
|
225 |
+
shift = np.array(shift)
|
226 |
+
src_w = scale[0]
|
227 |
+
dst_w = output_size[0]
|
228 |
+
dst_h = output_size[1]
|
229 |
+
|
230 |
+
# compute transformation matrix
|
231 |
+
rot_rad = np.deg2rad(rot)
|
232 |
+
src_dir = _rotate_point(np.array([0., src_w * -0.5]), rot_rad)
|
233 |
+
dst_dir = np.array([0., dst_w * -0.5])
|
234 |
+
|
235 |
+
# get four corners of the src rectangle in the original image
|
236 |
+
src = np.zeros((3, 2), dtype=np.float32)
|
237 |
+
src[0, :] = center + scale * shift
|
238 |
+
src[1, :] = center + src_dir + scale * shift
|
239 |
+
src[2, :] = _get_3rd_point(src[0, :], src[1, :])
|
240 |
+
|
241 |
+
# get four corners of the dst rectangle in the input image
|
242 |
+
dst = np.zeros((3, 2), dtype=np.float32)
|
243 |
+
dst[0, :] = [dst_w * 0.5, dst_h * 0.5]
|
244 |
+
dst[1, :] = np.array([dst_w * 0.5, dst_h * 0.5]) + dst_dir
|
245 |
+
dst[2, :] = _get_3rd_point(dst[0, :], dst[1, :])
|
246 |
+
|
247 |
+
if inv:
|
248 |
+
warp_mat = cv2.getAffineTransform(np.float32(dst), np.float32(src))
|
249 |
+
else:
|
250 |
+
warp_mat = cv2.getAffineTransform(np.float32(src), np.float32(dst))
|
251 |
+
|
252 |
+
return warp_mat
|
253 |
+
|
254 |
+
|
255 |
+
def top_down_affine(input_size: dict, bbox_scale: dict, bbox_center: dict,
|
256 |
+
img: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
|
257 |
+
"""Get the bbox image as the model input by affine transform.
|
258 |
+
|
259 |
+
Args:
|
260 |
+
input_size (dict): The input size of the model.
|
261 |
+
bbox_scale (dict): The bbox scale of the img.
|
262 |
+
bbox_center (dict): The bbox center of the img.
|
263 |
+
img (np.ndarray): The original image.
|
264 |
+
|
265 |
+
Returns:
|
266 |
+
tuple: A tuple containing center and scale.
|
267 |
+
- np.ndarray[float32]: img after affine transform.
|
268 |
+
- np.ndarray[float32]: bbox scale after affine transform.
|
269 |
+
"""
|
270 |
+
w, h = input_size
|
271 |
+
warp_size = (int(w), int(h))
|
272 |
+
|
273 |
+
# reshape bbox to fixed aspect ratio
|
274 |
+
bbox_scale = _fix_aspect_ratio(bbox_scale, aspect_ratio=w / h)
|
275 |
+
|
276 |
+
# get the affine matrix
|
277 |
+
center = bbox_center
|
278 |
+
scale = bbox_scale
|
279 |
+
rot = 0
|
280 |
+
warp_mat = get_warp_matrix(center, scale, rot, output_size=(w, h))
|
281 |
+
|
282 |
+
# do affine transform
|
283 |
+
img = cv2.warpAffine(img, warp_mat, warp_size, flags=cv2.INTER_LINEAR)
|
284 |
+
|
285 |
+
return img, bbox_scale
|
286 |
+
|
287 |
+
|
288 |
+
def get_simcc_maximum(simcc_x: np.ndarray,
|
289 |
+
simcc_y: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
|
290 |
+
"""Get maximum response location and value from simcc representations.
|
291 |
+
|
292 |
+
Note:
|
293 |
+
instance number: N
|
294 |
+
num_keypoints: K
|
295 |
+
heatmap height: H
|
296 |
+
heatmap width: W
|
297 |
+
|
298 |
+
Args:
|
299 |
+
simcc_x (np.ndarray): x-axis SimCC in shape (K, Wx) or (N, K, Wx)
|
300 |
+
simcc_y (np.ndarray): y-axis SimCC in shape (K, Wy) or (N, K, Wy)
|
301 |
+
|
302 |
+
Returns:
|
303 |
+
tuple:
|
304 |
+
- locs (np.ndarray): locations of maximum heatmap responses in shape
|
305 |
+
(K, 2) or (N, K, 2)
|
306 |
+
- vals (np.ndarray): values of maximum heatmap responses in shape
|
307 |
+
(K,) or (N, K)
|
308 |
+
"""
|
309 |
+
N, K, Wx = simcc_x.shape
|
310 |
+
simcc_x = simcc_x.reshape(N * K, -1)
|
311 |
+
simcc_y = simcc_y.reshape(N * K, -1)
|
312 |
+
|
313 |
+
# get maximum value locations
|
314 |
+
x_locs = np.argmax(simcc_x, axis=1)
|
315 |
+
y_locs = np.argmax(simcc_y, axis=1)
|
316 |
+
locs = np.stack((x_locs, y_locs), axis=-1).astype(np.float32)
|
317 |
+
max_val_x = np.amax(simcc_x, axis=1)
|
318 |
+
max_val_y = np.amax(simcc_y, axis=1)
|
319 |
+
|
320 |
+
# get maximum value across x and y axis
|
321 |
+
mask = max_val_x > max_val_y
|
322 |
+
max_val_x[mask] = max_val_y[mask]
|
323 |
+
vals = max_val_x
|
324 |
+
locs[vals <= 0.] = -1
|
325 |
+
|
326 |
+
# reshape
|
327 |
+
locs = locs.reshape(N, K, 2)
|
328 |
+
vals = vals.reshape(N, K)
|
329 |
+
|
330 |
+
return locs, vals
|
331 |
+
|
332 |
+
|
333 |
+
def decode(simcc_x: np.ndarray, simcc_y: np.ndarray,
|
334 |
+
simcc_split_ratio) -> Tuple[np.ndarray, np.ndarray]:
|
335 |
+
"""Modulate simcc distribution with Gaussian.
|
336 |
+
|
337 |
+
Args:
|
338 |
+
simcc_x (np.ndarray[K, Wx]): model predicted simcc in x.
|
339 |
+
simcc_y (np.ndarray[K, Wy]): model predicted simcc in y.
|
340 |
+
simcc_split_ratio (int): The split ratio of simcc.
|
341 |
+
|
342 |
+
Returns:
|
343 |
+
tuple: A tuple containing center and scale.
|
344 |
+
- np.ndarray[float32]: keypoints in shape (K, 2) or (n, K, 2)
|
345 |
+
- np.ndarray[float32]: scores in shape (K,) or (n, K)
|
346 |
+
"""
|
347 |
+
keypoints, scores = get_simcc_maximum(simcc_x, simcc_y)
|
348 |
+
keypoints /= simcc_split_ratio
|
349 |
+
|
350 |
+
return keypoints, scores
|
351 |
+
|
352 |
+
|
353 |
+
def inference_pose(session, out_bbox, oriImg):
|
354 |
+
h, w = session.get_inputs()[0].shape[2:]
|
355 |
+
model_input_size = (w, h)
|
356 |
+
resized_img, center, scale = preprocess(oriImg, out_bbox, model_input_size)
|
357 |
+
outputs = inference(session, resized_img)
|
358 |
+
keypoints, scores = postprocess(outputs, model_input_size, center, scale)
|
359 |
+
|
360 |
+
return keypoints, scores
|
annotator/dwpose/util.py
ADDED
@@ -0,0 +1,297 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import numpy as np
|
3 |
+
import matplotlib
|
4 |
+
import cv2
|
5 |
+
|
6 |
+
|
7 |
+
eps = 0.01
|
8 |
+
|
9 |
+
|
10 |
+
def smart_resize(x, s):
|
11 |
+
Ht, Wt = s
|
12 |
+
if x.ndim == 2:
|
13 |
+
Ho, Wo = x.shape
|
14 |
+
Co = 1
|
15 |
+
else:
|
16 |
+
Ho, Wo, Co = x.shape
|
17 |
+
if Co == 3 or Co == 1:
|
18 |
+
k = float(Ht + Wt) / float(Ho + Wo)
|
19 |
+
return cv2.resize(x, (int(Wt), int(Ht)), interpolation=cv2.INTER_AREA if k < 1 else cv2.INTER_LANCZOS4)
|
20 |
+
else:
|
21 |
+
return np.stack([smart_resize(x[:, :, i], s) for i in range(Co)], axis=2)
|
22 |
+
|
23 |
+
|
24 |
+
def smart_resize_k(x, fx, fy):
|
25 |
+
if x.ndim == 2:
|
26 |
+
Ho, Wo = x.shape
|
27 |
+
Co = 1
|
28 |
+
else:
|
29 |
+
Ho, Wo, Co = x.shape
|
30 |
+
Ht, Wt = Ho * fy, Wo * fx
|
31 |
+
if Co == 3 or Co == 1:
|
32 |
+
k = float(Ht + Wt) / float(Ho + Wo)
|
33 |
+
return cv2.resize(x, (int(Wt), int(Ht)), interpolation=cv2.INTER_AREA if k < 1 else cv2.INTER_LANCZOS4)
|
34 |
+
else:
|
35 |
+
return np.stack([smart_resize_k(x[:, :, i], fx, fy) for i in range(Co)], axis=2)
|
36 |
+
|
37 |
+
|
38 |
+
def padRightDownCorner(img, stride, padValue):
|
39 |
+
h = img.shape[0]
|
40 |
+
w = img.shape[1]
|
41 |
+
|
42 |
+
pad = 4 * [None]
|
43 |
+
pad[0] = 0 # up
|
44 |
+
pad[1] = 0 # left
|
45 |
+
pad[2] = 0 if (h % stride == 0) else stride - (h % stride) # down
|
46 |
+
pad[3] = 0 if (w % stride == 0) else stride - (w % stride) # right
|
47 |
+
|
48 |
+
img_padded = img
|
49 |
+
pad_up = np.tile(img_padded[0:1, :, :]*0 + padValue, (pad[0], 1, 1))
|
50 |
+
img_padded = np.concatenate((pad_up, img_padded), axis=0)
|
51 |
+
pad_left = np.tile(img_padded[:, 0:1, :]*0 + padValue, (1, pad[1], 1))
|
52 |
+
img_padded = np.concatenate((pad_left, img_padded), axis=1)
|
53 |
+
pad_down = np.tile(img_padded[-2:-1, :, :]*0 + padValue, (pad[2], 1, 1))
|
54 |
+
img_padded = np.concatenate((img_padded, pad_down), axis=0)
|
55 |
+
pad_right = np.tile(img_padded[:, -2:-1, :]*0 + padValue, (1, pad[3], 1))
|
56 |
+
img_padded = np.concatenate((img_padded, pad_right), axis=1)
|
57 |
+
|
58 |
+
return img_padded, pad
|
59 |
+
|
60 |
+
|
61 |
+
def transfer(model, model_weights):
|
62 |
+
transfered_model_weights = {}
|
63 |
+
for weights_name in model.state_dict().keys():
|
64 |
+
transfered_model_weights[weights_name] = model_weights['.'.join(weights_name.split('.')[1:])]
|
65 |
+
return transfered_model_weights
|
66 |
+
|
67 |
+
|
68 |
+
def draw_bodypose(canvas, candidate, subset):
|
69 |
+
H, W, C = canvas.shape
|
70 |
+
candidate = np.array(candidate)
|
71 |
+
subset = np.array(subset)
|
72 |
+
|
73 |
+
stickwidth = 4
|
74 |
+
|
75 |
+
limbSeq = [[2, 3], [2, 6], [3, 4], [4, 5], [6, 7], [7, 8], [2, 9], [9, 10], \
|
76 |
+
[10, 11], [2, 12], [12, 13], [13, 14], [2, 1], [1, 15], [15, 17], \
|
77 |
+
[1, 16], [16, 18], [3, 17], [6, 18]]
|
78 |
+
|
79 |
+
colors = [[255, 0, 0], [255, 85, 0], [255, 170, 0], [255, 255, 0], [170, 255, 0], [85, 255, 0], [0, 255, 0], \
|
80 |
+
[0, 255, 85], [0, 255, 170], [0, 255, 255], [0, 170, 255], [0, 85, 255], [0, 0, 255], [85, 0, 255], \
|
81 |
+
[170, 0, 255], [255, 0, 255], [255, 0, 170], [255, 0, 85]]
|
82 |
+
|
83 |
+
for i in range(17):
|
84 |
+
for n in range(len(subset)):
|
85 |
+
index = subset[n][np.array(limbSeq[i]) - 1]
|
86 |
+
if -1 in index:
|
87 |
+
continue
|
88 |
+
Y = candidate[index.astype(int), 0] * float(W)
|
89 |
+
X = candidate[index.astype(int), 1] * float(H)
|
90 |
+
mX = np.mean(X)
|
91 |
+
mY = np.mean(Y)
|
92 |
+
length = ((X[0] - X[1]) ** 2 + (Y[0] - Y[1]) ** 2) ** 0.5
|
93 |
+
angle = math.degrees(math.atan2(X[0] - X[1], Y[0] - Y[1]))
|
94 |
+
polygon = cv2.ellipse2Poly((int(mY), int(mX)), (int(length / 2), stickwidth), int(angle), 0, 360, 1)
|
95 |
+
cv2.fillConvexPoly(canvas, polygon, colors[i])
|
96 |
+
|
97 |
+
canvas = (canvas * 0.6).astype(np.uint8)
|
98 |
+
|
99 |
+
for i in range(18):
|
100 |
+
for n in range(len(subset)):
|
101 |
+
index = int(subset[n][i])
|
102 |
+
if index == -1:
|
103 |
+
continue
|
104 |
+
x, y = candidate[index][0:2]
|
105 |
+
x = int(x * W)
|
106 |
+
y = int(y * H)
|
107 |
+
cv2.circle(canvas, (int(x), int(y)), 4, colors[i], thickness=-1)
|
108 |
+
|
109 |
+
return canvas
|
110 |
+
|
111 |
+
|
112 |
+
def draw_handpose(canvas, all_hand_peaks):
|
113 |
+
H, W, C = canvas.shape
|
114 |
+
|
115 |
+
edges = [[0, 1], [1, 2], [2, 3], [3, 4], [0, 5], [5, 6], [6, 7], [7, 8], [0, 9], [9, 10], \
|
116 |
+
[10, 11], [11, 12], [0, 13], [13, 14], [14, 15], [15, 16], [0, 17], [17, 18], [18, 19], [19, 20]]
|
117 |
+
|
118 |
+
for peaks in all_hand_peaks:
|
119 |
+
peaks = np.array(peaks)
|
120 |
+
|
121 |
+
for ie, e in enumerate(edges):
|
122 |
+
x1, y1 = peaks[e[0]]
|
123 |
+
x2, y2 = peaks[e[1]]
|
124 |
+
x1 = int(x1 * W)
|
125 |
+
y1 = int(y1 * H)
|
126 |
+
x2 = int(x2 * W)
|
127 |
+
y2 = int(y2 * H)
|
128 |
+
if x1 > eps and y1 > eps and x2 > eps and y2 > eps:
|
129 |
+
cv2.line(canvas, (x1, y1), (x2, y2), matplotlib.colors.hsv_to_rgb([ie / float(len(edges)), 1.0, 1.0]) * 255, thickness=2)
|
130 |
+
|
131 |
+
for i, keyponit in enumerate(peaks):
|
132 |
+
x, y = keyponit
|
133 |
+
x = int(x * W)
|
134 |
+
y = int(y * H)
|
135 |
+
if x > eps and y > eps:
|
136 |
+
cv2.circle(canvas, (x, y), 4, (0, 0, 255), thickness=-1)
|
137 |
+
return canvas
|
138 |
+
|
139 |
+
|
140 |
+
def draw_facepose(canvas, all_lmks):
|
141 |
+
H, W, C = canvas.shape
|
142 |
+
for lmks in all_lmks:
|
143 |
+
lmks = np.array(lmks)
|
144 |
+
for lmk in lmks:
|
145 |
+
x, y = lmk
|
146 |
+
x = int(x * W)
|
147 |
+
y = int(y * H)
|
148 |
+
if x > eps and y > eps:
|
149 |
+
cv2.circle(canvas, (x, y), 3, (255, 255, 255), thickness=-1)
|
150 |
+
return canvas
|
151 |
+
|
152 |
+
|
153 |
+
# detect hand according to body pose keypoints
|
154 |
+
# please refer to https://github.com/CMU-Perceptual-Computing-Lab/openpose/blob/master/src/openpose/hand/handDetector.cpp
|
155 |
+
def handDetect(candidate, subset, oriImg):
|
156 |
+
# right hand: wrist 4, elbow 3, shoulder 2
|
157 |
+
# left hand: wrist 7, elbow 6, shoulder 5
|
158 |
+
ratioWristElbow = 0.33
|
159 |
+
detect_result = []
|
160 |
+
image_height, image_width = oriImg.shape[0:2]
|
161 |
+
for person in subset.astype(int):
|
162 |
+
# if any of three not detected
|
163 |
+
has_left = np.sum(person[[5, 6, 7]] == -1) == 0
|
164 |
+
has_right = np.sum(person[[2, 3, 4]] == -1) == 0
|
165 |
+
if not (has_left or has_right):
|
166 |
+
continue
|
167 |
+
hands = []
|
168 |
+
#left hand
|
169 |
+
if has_left:
|
170 |
+
left_shoulder_index, left_elbow_index, left_wrist_index = person[[5, 6, 7]]
|
171 |
+
x1, y1 = candidate[left_shoulder_index][:2]
|
172 |
+
x2, y2 = candidate[left_elbow_index][:2]
|
173 |
+
x3, y3 = candidate[left_wrist_index][:2]
|
174 |
+
hands.append([x1, y1, x2, y2, x3, y3, True])
|
175 |
+
# right hand
|
176 |
+
if has_right:
|
177 |
+
right_shoulder_index, right_elbow_index, right_wrist_index = person[[2, 3, 4]]
|
178 |
+
x1, y1 = candidate[right_shoulder_index][:2]
|
179 |
+
x2, y2 = candidate[right_elbow_index][:2]
|
180 |
+
x3, y3 = candidate[right_wrist_index][:2]
|
181 |
+
hands.append([x1, y1, x2, y2, x3, y3, False])
|
182 |
+
|
183 |
+
for x1, y1, x2, y2, x3, y3, is_left in hands:
|
184 |
+
# pos_hand = pos_wrist + ratio * (pos_wrist - pos_elbox) = (1 + ratio) * pos_wrist - ratio * pos_elbox
|
185 |
+
# handRectangle.x = posePtr[wrist*3] + ratioWristElbow * (posePtr[wrist*3] - posePtr[elbow*3]);
|
186 |
+
# handRectangle.y = posePtr[wrist*3+1] + ratioWristElbow * (posePtr[wrist*3+1] - posePtr[elbow*3+1]);
|
187 |
+
# const auto distanceWristElbow = getDistance(poseKeypoints, person, wrist, elbow);
|
188 |
+
# const auto distanceElbowShoulder = getDistance(poseKeypoints, person, elbow, shoulder);
|
189 |
+
# handRectangle.width = 1.5f * fastMax(distanceWristElbow, 0.9f * distanceElbowShoulder);
|
190 |
+
x = x3 + ratioWristElbow * (x3 - x2)
|
191 |
+
y = y3 + ratioWristElbow * (y3 - y2)
|
192 |
+
distanceWristElbow = math.sqrt((x3 - x2) ** 2 + (y3 - y2) ** 2)
|
193 |
+
distanceElbowShoulder = math.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
|
194 |
+
width = 1.5 * max(distanceWristElbow, 0.9 * distanceElbowShoulder)
|
195 |
+
# x-y refers to the center --> offset to topLeft point
|
196 |
+
# handRectangle.x -= handRectangle.width / 2.f;
|
197 |
+
# handRectangle.y -= handRectangle.height / 2.f;
|
198 |
+
x -= width / 2
|
199 |
+
y -= width / 2 # width = height
|
200 |
+
# overflow the image
|
201 |
+
if x < 0: x = 0
|
202 |
+
if y < 0: y = 0
|
203 |
+
width1 = width
|
204 |
+
width2 = width
|
205 |
+
if x + width > image_width: width1 = image_width - x
|
206 |
+
if y + width > image_height: width2 = image_height - y
|
207 |
+
width = min(width1, width2)
|
208 |
+
# the max hand box value is 20 pixels
|
209 |
+
if width >= 20:
|
210 |
+
detect_result.append([int(x), int(y), int(width), is_left])
|
211 |
+
|
212 |
+
'''
|
213 |
+
return value: [[x, y, w, True if left hand else False]].
|
214 |
+
width=height since the network require squared input.
|
215 |
+
x, y is the coordinate of top left
|
216 |
+
'''
|
217 |
+
return detect_result
|
218 |
+
|
219 |
+
|
220 |
+
# Written by Lvmin
|
221 |
+
def faceDetect(candidate, subset, oriImg):
|
222 |
+
# left right eye ear 14 15 16 17
|
223 |
+
detect_result = []
|
224 |
+
image_height, image_width = oriImg.shape[0:2]
|
225 |
+
for person in subset.astype(int):
|
226 |
+
has_head = person[0] > -1
|
227 |
+
if not has_head:
|
228 |
+
continue
|
229 |
+
|
230 |
+
has_left_eye = person[14] > -1
|
231 |
+
has_right_eye = person[15] > -1
|
232 |
+
has_left_ear = person[16] > -1
|
233 |
+
has_right_ear = person[17] > -1
|
234 |
+
|
235 |
+
if not (has_left_eye or has_right_eye or has_left_ear or has_right_ear):
|
236 |
+
continue
|
237 |
+
|
238 |
+
head, left_eye, right_eye, left_ear, right_ear = person[[0, 14, 15, 16, 17]]
|
239 |
+
|
240 |
+
width = 0.0
|
241 |
+
x0, y0 = candidate[head][:2]
|
242 |
+
|
243 |
+
if has_left_eye:
|
244 |
+
x1, y1 = candidate[left_eye][:2]
|
245 |
+
d = max(abs(x0 - x1), abs(y0 - y1))
|
246 |
+
width = max(width, d * 3.0)
|
247 |
+
|
248 |
+
if has_right_eye:
|
249 |
+
x1, y1 = candidate[right_eye][:2]
|
250 |
+
d = max(abs(x0 - x1), abs(y0 - y1))
|
251 |
+
width = max(width, d * 3.0)
|
252 |
+
|
253 |
+
if has_left_ear:
|
254 |
+
x1, y1 = candidate[left_ear][:2]
|
255 |
+
d = max(abs(x0 - x1), abs(y0 - y1))
|
256 |
+
width = max(width, d * 1.5)
|
257 |
+
|
258 |
+
if has_right_ear:
|
259 |
+
x1, y1 = candidate[right_ear][:2]
|
260 |
+
d = max(abs(x0 - x1), abs(y0 - y1))
|
261 |
+
width = max(width, d * 1.5)
|
262 |
+
|
263 |
+
x, y = x0, y0
|
264 |
+
|
265 |
+
x -= width
|
266 |
+
y -= width
|
267 |
+
|
268 |
+
if x < 0:
|
269 |
+
x = 0
|
270 |
+
|
271 |
+
if y < 0:
|
272 |
+
y = 0
|
273 |
+
|
274 |
+
width1 = width * 2
|
275 |
+
width2 = width * 2
|
276 |
+
|
277 |
+
if x + width > image_width:
|
278 |
+
width1 = image_width - x
|
279 |
+
|
280 |
+
if y + width > image_height:
|
281 |
+
width2 = image_height - y
|
282 |
+
|
283 |
+
width = min(width1, width2)
|
284 |
+
|
285 |
+
if width >= 20:
|
286 |
+
detect_result.append([int(x), int(y), int(width)])
|
287 |
+
|
288 |
+
return detect_result
|
289 |
+
|
290 |
+
|
291 |
+
# get max index of 2d array
|
292 |
+
def npmax(array):
|
293 |
+
arrayindex = array.argmax(1)
|
294 |
+
arrayvalue = array.max(1)
|
295 |
+
i = arrayvalue.argmax()
|
296 |
+
j = arrayindex[i]
|
297 |
+
return i, j
|
annotator/dwpose/wholebody.py
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import numpy as np
|
3 |
+
|
4 |
+
import onnxruntime as ort
|
5 |
+
from .onnxdet import inference_detector
|
6 |
+
from .onnxpose import inference_pose
|
7 |
+
|
8 |
+
class Wholebody:
|
9 |
+
def __init__(self):
|
10 |
+
device = 'cuda:0'
|
11 |
+
providers = ['CPUExecutionProvider'
|
12 |
+
] if device == 'cpu' else ['CUDAExecutionProvider']
|
13 |
+
# providers = ['CPUExecutionProvider']
|
14 |
+
providers = ['CUDAExecutionProvider']
|
15 |
+
onnx_det = 'annotator/ckpts/yolox_l.onnx'
|
16 |
+
onnx_pose = 'annotator/ckpts/dw-ll_ucoco_384.onnx'
|
17 |
+
|
18 |
+
self.session_det = ort.InferenceSession(path_or_bytes=onnx_det, providers=providers)
|
19 |
+
self.session_pose = ort.InferenceSession(path_or_bytes=onnx_pose, providers=providers)
|
20 |
+
def __call__(self, oriImg):
|
21 |
+
det_result = inference_detector(self.session_det, oriImg)
|
22 |
+
keypoints, scores = inference_pose(self.session_pose, det_result, oriImg)
|
23 |
+
|
24 |
+
keypoints_info = np.concatenate(
|
25 |
+
(keypoints, scores[..., None]), axis=-1)
|
26 |
+
# compute neck joint
|
27 |
+
neck = np.mean(keypoints_info[:, [5, 6]], axis=1)
|
28 |
+
# neck score when visualizing pred
|
29 |
+
neck[:, 2:4] = np.logical_and(
|
30 |
+
keypoints_info[:, 5, 2:4] > 0.3,
|
31 |
+
keypoints_info[:, 6, 2:4] > 0.3).astype(int)
|
32 |
+
new_keypoints_info = np.insert(
|
33 |
+
keypoints_info, 17, neck, axis=1)
|
34 |
+
mmpose_idx = [
|
35 |
+
17, 6, 8, 10, 7, 9, 12, 14, 16, 13, 15, 2, 1, 4, 3
|
36 |
+
]
|
37 |
+
openpose_idx = [
|
38 |
+
1, 2, 3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17
|
39 |
+
]
|
40 |
+
new_keypoints_info[:, openpose_idx] = \
|
41 |
+
new_keypoints_info[:, mmpose_idx]
|
42 |
+
keypoints_info = new_keypoints_info
|
43 |
+
|
44 |
+
keypoints, scores = keypoints_info[
|
45 |
+
..., :2], keypoints_info[..., 2]
|
46 |
+
|
47 |
+
return keypoints, scores
|
48 |
+
|
49 |
+
|
app.py
CHANGED
@@ -16,6 +16,7 @@ from kolors.models.unet_2d_condition import UNet2DConditionModel
|
|
16 |
from diffusers import EulerDiscreteScheduler
|
17 |
from PIL import Image
|
18 |
from annotator.midas import MidasDetector
|
|
|
19 |
from annotator.util import resize_image, HWC3
|
20 |
|
21 |
|
@@ -23,6 +24,7 @@ device = "cuda"
|
|
23 |
ckpt_dir = snapshot_download(repo_id="Kwai-Kolors/Kolors")
|
24 |
ckpt_dir_depth = snapshot_download(repo_id="Kwai-Kolors/Kolors-ControlNet-Depth")
|
25 |
ckpt_dir_canny = snapshot_download(repo_id="Kwai-Kolors/Kolors-ControlNet-Canny")
|
|
|
26 |
|
27 |
text_encoder = ChatGLMModel.from_pretrained(f'{ckpt_dir}/text_encoder', torch_dtype=torch.float16).half().to(device)
|
28 |
tokenizer = ChatGLMTokenizer.from_pretrained(f'{ckpt_dir}/text_encoder')
|
@@ -31,6 +33,7 @@ scheduler = EulerDiscreteScheduler.from_pretrained(f"{ckpt_dir}/scheduler")
|
|
31 |
unet = UNet2DConditionModel.from_pretrained(f"{ckpt_dir}/unet", revision=None).half().to(device)
|
32 |
controlnet_depth = ControlNetModel.from_pretrained(f"{ckpt_dir_depth}", revision=None).half().to(device)
|
33 |
controlnet_canny = ControlNetModel.from_pretrained(f"{ckpt_dir_canny}", revision=None).half().to(device)
|
|
|
34 |
|
35 |
pipe_depth = StableDiffusionXLControlNetImg2ImgPipeline(
|
36 |
vae=vae,
|
@@ -52,6 +55,16 @@ pipe_canny = StableDiffusionXLControlNetImg2ImgPipeline(
|
|
52 |
force_zeros_for_empty_prompt=False
|
53 |
)
|
54 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
@spaces.GPU
|
56 |
def process_canny_condition(image, canny_threods=[100,200]):
|
57 |
np_image = image.copy()
|
@@ -62,7 +75,6 @@ def process_canny_condition(image, canny_threods=[100,200]):
|
|
62 |
return Image.fromarray(np_image)
|
63 |
|
64 |
model_midas = MidasDetector()
|
65 |
-
|
66 |
@spaces.GPU
|
67 |
def process_depth_condition_midas(img, res = 1024):
|
68 |
h,w,_ = img.shape
|
@@ -71,6 +83,16 @@ def process_depth_condition_midas(img, res = 1024):
|
|
71 |
result = cv2.resize(result, (w,h))
|
72 |
return Image.fromarray(result)
|
73 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
MAX_SEED = np.iinfo(np.int32).max
|
75 |
MAX_IMAGE_SIZE = 1024
|
76 |
|
@@ -140,6 +162,39 @@ def infer_canny(prompt,
|
|
140 |
).images[0]
|
141 |
return [condi_img, image], seed
|
142 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
143 |
canny_examples = [
|
144 |
["一个漂亮的女孩,高品质,超清晰,色彩鲜艳,超高分辨率,最佳品质,8k,高清,4K",
|
145 |
"image/woman_1.png"],
|
@@ -154,6 +209,13 @@ depth_examples = [
|
|
154 |
"image/bird.png"]
|
155 |
]
|
156 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
157 |
css="""
|
158 |
#col-left {
|
159 |
margin: 0 auto;
|
@@ -241,6 +303,7 @@ with gr.Blocks(css=css) as Kolors:
|
|
241 |
with gr.Row():
|
242 |
canny_button = gr.Button("Canny", elem_id="button")
|
243 |
depth_button = gr.Button("Depth", elem_id="button")
|
|
|
244 |
|
245 |
with gr.Column(elem_id="col-right"):
|
246 |
result = gr.Gallery(label="Result", show_label=False, columns=2)
|
@@ -262,6 +325,15 @@ with gr.Blocks(css=css) as Kolors:
|
|
262 |
outputs = [result, seed_used],
|
263 |
label = "Depth"
|
264 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
265 |
|
266 |
canny_button.click(
|
267 |
fn = infer_canny,
|
@@ -275,4 +347,10 @@ with gr.Blocks(css=css) as Kolors:
|
|
275 |
outputs = [result, seed_used]
|
276 |
)
|
277 |
|
|
|
|
|
|
|
|
|
|
|
|
|
278 |
Kolors.queue().launch(debug=True)
|
|
|
16 |
from diffusers import EulerDiscreteScheduler
|
17 |
from PIL import Image
|
18 |
from annotator.midas import MidasDetector
|
19 |
+
from annotator.dwpose import DWposeDetector
|
20 |
from annotator.util import resize_image, HWC3
|
21 |
|
22 |
|
|
|
24 |
ckpt_dir = snapshot_download(repo_id="Kwai-Kolors/Kolors")
|
25 |
ckpt_dir_depth = snapshot_download(repo_id="Kwai-Kolors/Kolors-ControlNet-Depth")
|
26 |
ckpt_dir_canny = snapshot_download(repo_id="Kwai-Kolors/Kolors-ControlNet-Canny")
|
27 |
+
ckpt_dir_pose = snapshot_download(repo_id="Kwai-Kolors/Kolors-ControlNet-Pose")
|
28 |
|
29 |
text_encoder = ChatGLMModel.from_pretrained(f'{ckpt_dir}/text_encoder', torch_dtype=torch.float16).half().to(device)
|
30 |
tokenizer = ChatGLMTokenizer.from_pretrained(f'{ckpt_dir}/text_encoder')
|
|
|
33 |
unet = UNet2DConditionModel.from_pretrained(f"{ckpt_dir}/unet", revision=None).half().to(device)
|
34 |
controlnet_depth = ControlNetModel.from_pretrained(f"{ckpt_dir_depth}", revision=None).half().to(device)
|
35 |
controlnet_canny = ControlNetModel.from_pretrained(f"{ckpt_dir_canny}", revision=None).half().to(device)
|
36 |
+
controlnet_pose = ControlNetModel.from_pretrained(f"{ckpt_dir_pose}", revision=None).half().to(device)
|
37 |
|
38 |
pipe_depth = StableDiffusionXLControlNetImg2ImgPipeline(
|
39 |
vae=vae,
|
|
|
55 |
force_zeros_for_empty_prompt=False
|
56 |
)
|
57 |
|
58 |
+
pipe_pose = StableDiffusionXLControlNetImg2ImgPipeline(
|
59 |
+
vae=vae,
|
60 |
+
controlnet = controlnet_pose,
|
61 |
+
text_encoder=text_encoder,
|
62 |
+
tokenizer=tokenizer,
|
63 |
+
unet=unet,
|
64 |
+
scheduler=scheduler,
|
65 |
+
force_zeros_for_empty_prompt=False
|
66 |
+
)
|
67 |
+
|
68 |
@spaces.GPU
|
69 |
def process_canny_condition(image, canny_threods=[100,200]):
|
70 |
np_image = image.copy()
|
|
|
75 |
return Image.fromarray(np_image)
|
76 |
|
77 |
model_midas = MidasDetector()
|
|
|
78 |
@spaces.GPU
|
79 |
def process_depth_condition_midas(img, res = 1024):
|
80 |
h,w,_ = img.shape
|
|
|
83 |
result = cv2.resize(result, (w,h))
|
84 |
return Image.fromarray(result)
|
85 |
|
86 |
+
model_dwpose = DWposeDetector()
|
87 |
+
@spaces.GPU
|
88 |
+
def process_dwpose_condition(image, res=1024):
|
89 |
+
h,w,_ = image.shape
|
90 |
+
img = resize_image(HWC3(image), res)
|
91 |
+
out_res, out_img = model_dwpose(img)
|
92 |
+
result = HWC3( out_img )
|
93 |
+
result = cv2.resize( result, (w,h) )
|
94 |
+
return Image.fromarray(result)
|
95 |
+
|
96 |
MAX_SEED = np.iinfo(np.int32).max
|
97 |
MAX_IMAGE_SIZE = 1024
|
98 |
|
|
|
162 |
).images[0]
|
163 |
return [condi_img, image], seed
|
164 |
|
165 |
+
@spaces.GPU
|
166 |
+
def infer_pose(prompt,
|
167 |
+
image = None,
|
168 |
+
negative_prompt = "nsfw,脸部阴影,低分辨率,jpeg伪影、模糊、糟糕,黑脸,霓虹灯",
|
169 |
+
seed = 397886929,
|
170 |
+
randomize_seed = False,
|
171 |
+
guidance_scale = 6.0,
|
172 |
+
num_inference_steps = 50,
|
173 |
+
controlnet_conditioning_scale = 0.7,
|
174 |
+
control_guidance_end = 0.9,
|
175 |
+
strength = 1.0
|
176 |
+
):
|
177 |
+
if randomize_seed:
|
178 |
+
seed = random.randint(0, MAX_SEED)
|
179 |
+
generator = torch.Generator().manual_seed(seed)
|
180 |
+
init_image = resize_image(image, MAX_IMAGE_SIZE)
|
181 |
+
pipe = pipe_canny.to("cuda")
|
182 |
+
condi_img = process_dwpose_condition(np.array(init_image), MAX_IMAGE_SIZE)
|
183 |
+
image = pipe(
|
184 |
+
prompt= prompt ,
|
185 |
+
image = init_image,
|
186 |
+
controlnet_conditioning_scale = controlnet_conditioning_scale,
|
187 |
+
control_guidance_end = control_guidance_end,
|
188 |
+
strength= strength ,
|
189 |
+
control_image = condi_img,
|
190 |
+
negative_prompt= negative_prompt ,
|
191 |
+
num_inference_steps= num_inference_steps,
|
192 |
+
guidance_scale= guidance_scale,
|
193 |
+
num_images_per_prompt=1,
|
194 |
+
generator=generator,
|
195 |
+
).images[0]
|
196 |
+
return [condi_img, image], seed
|
197 |
+
|
198 |
canny_examples = [
|
199 |
["一个漂亮的女孩,高品质,超清晰,色彩鲜艳,超高分辨率,最佳品质,8k,高清,4K",
|
200 |
"image/woman_1.png"],
|
|
|
209 |
"image/bird.png"]
|
210 |
]
|
211 |
|
212 |
+
pose_examples = [
|
213 |
+
["一位穿着紫色泡泡袖连衣裙、戴着皇冠和白色蕾丝手套的女孩双手托脸,高品质,超清晰,色彩鲜艳,超高分辨率,最佳品质,8k,高清,4K",
|
214 |
+
"image/woman_3.png"]
|
215 |
+
["一个穿着黑色运动外套、白色内搭,上面戴着项链的女子,站在街边,背景是红色建筑和绿树,高品质,超清晰,色彩鲜艳,超高分辨率,最佳品质,8k,高清,4K",
|
216 |
+
"image/woman_4.png"],
|
217 |
+
]
|
218 |
+
|
219 |
css="""
|
220 |
#col-left {
|
221 |
margin: 0 auto;
|
|
|
303 |
with gr.Row():
|
304 |
canny_button = gr.Button("Canny", elem_id="button")
|
305 |
depth_button = gr.Button("Depth", elem_id="button")
|
306 |
+
pose_button = gr.Button("Pose", elem_id="button")
|
307 |
|
308 |
with gr.Column(elem_id="col-right"):
|
309 |
result = gr.Gallery(label="Result", show_label=False, columns=2)
|
|
|
325 |
outputs = [result, seed_used],
|
326 |
label = "Depth"
|
327 |
)
|
328 |
+
|
329 |
+
with gr.Row():
|
330 |
+
gr.Examples(
|
331 |
+
fn = infer_pose,
|
332 |
+
examples = pose_examples,
|
333 |
+
inputs = [prompt, image],
|
334 |
+
outputs = [result, seed_used],
|
335 |
+
label = "Pose"
|
336 |
+
)
|
337 |
|
338 |
canny_button.click(
|
339 |
fn = infer_canny,
|
|
|
347 |
outputs = [result, seed_used]
|
348 |
)
|
349 |
|
350 |
+
pose_button.click(
|
351 |
+
fn = infer_pose,
|
352 |
+
inputs = [prompt, image, negative_prompt, seed, randomize_seed, guidance_scale, num_inference_steps, controlnet_conditioning_scale, control_guidance_end, strength],
|
353 |
+
outputs = [result, seed_used]
|
354 |
+
)
|
355 |
+
|
356 |
Kolors.queue().launch(debug=True)
|
image/woman_3.png
ADDED
Git LFS Details
|
image/woman_4.png
ADDED
Git LFS Details
|