File size: 25,991 Bytes
09773e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75fa56b
09773e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
import math
from typing import List, Optional, Union, Dict

import torch
from PIL import Image
import logging

import os
import json
import re
from transformers.feature_extraction_sequence_utils import BatchFeature
from transformers.image_utils import ImageInput
from transformers import ProcessorMixin, ImageProcessingMixin, AutoImageProcessor, AutoTokenizer, AutoProcessor
from transformers.tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from transformers.utils import TensorType
from transformers.processing_utils import transformers_module
from transformers.utils.hub import is_remote_url, download_url, cached_file, is_offline_mode
from transformers.utils import IMAGE_PROCESSOR_NAME

logger = logging.getLogger(__name__)


class GeckoProcessor(ProcessorMixin):
    attributes = ["image_processor", "tokenizer"]
    image_processor_class = ("CLIPImageProcessor", "SiglipImageProcessor")
    tokenizer_class = ("LlamaTokenizer", "LlamaTokenizerFast", "PreTrainedTokenizerFast")

    def __init__(self, image_processor=None, tokenizer=None, use_keyword=False, crop_size=336, cropping_method='dynamic', **kwargs):
        super().__init__(image_processor, tokenizer)
        self.crop_size = crop_size if crop_size is not None else int(image_processor.size['height'])
        self.use_keyword = use_keyword
        self.image_token_index = None
        self.cropping_method = cropping_method
        self.load_clip_tokenizer()

    def load_clip_tokenizer(self):
        if 'clip' in self.image_processor.image_processor_type.lower():
            self.clip_tokenizer = AutoTokenizer.from_pretrained('openai/clip-vit-large-patch14-336')
        elif 'siglip' in self.image_processor.image_processor_type.lower():
            self.clip_tokenizer = AutoTokenizer.from_pretrained("google/siglip-so400m-patch14-384")
        else:
            raise ValueError(f"Invalid image processor type: {self.image_processor.image_processor_type}")

    def process_images(self, images: List[Image.Image]):
        # create documentation
        """
        Parameters:
            images: List[Image.Image]
                List of PIL images to be processed
        Returns:
            Dict[str, torch.Tensor]:
                pixel_values: List[torch.Tensor]
                    Pixel values of the images. Has shape (num_images, num_patches, num_channels, height, width)
                coords: List[List[List[int]]]
                    Coordinates of the cropped images. Has shape (num_images, num_patches, 2)
                """

        pixel_values = []
        coords = []

        for image in images:
            outputs, coord = self.dynamic_preprocess(image)
            pixel_values.append(outputs)
            coords.append(coord)

        return {"pixel_values": pixel_values, "coords": coords}

    def find_closest_aspect_ratio(self, aspect_ratio, target_ratios, width, height, image_size):
        best_ratio_diff = float('inf')
        best_ratio = (1, 1)
        area = width * height
        for ratio in target_ratios:
            target_aspect_ratio = ratio[0] / ratio[1]
            ratio_diff = abs(aspect_ratio - target_aspect_ratio)
            if ratio_diff < best_ratio_diff:
                best_ratio_diff = ratio_diff
                best_ratio = ratio
            elif ratio_diff == best_ratio_diff:
                if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
                    best_ratio = ratio
        return best_ratio

    def dynamic_preprocess(self, image):
        orig_width, orig_height = image.size
        aspect_ratio = orig_width / orig_height

        if self.cropping_method == 'dynamic':
            max_num = math.ceil(orig_width / self.crop_size) * math.ceil(orig_height / self.crop_size)

            # calculate the existing image aspect ratio
            target_ratios = set(
                (i, j) for n in range(1, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
                i * j <= max_num and i * j >= 1)
            target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])

            # find the closest aspect ratio to the target
            target_aspect_ratio = self.find_closest_aspect_ratio(
                aspect_ratio, target_ratios, orig_width, orig_height, self.crop_size)
            # if target_aspect_ratio[0] * target_aspect_ratio[1] <= 25:
            #     target_aspect_ratio = (int(1.5 * target_aspect_ratio[0]), int(1.5 * target_aspect_ratio[1]))
            
        elif self.cropping_method == 'naive':
            target_aspect_ratio = (orig_width // self.crop_size, orig_height // self.crop_size)
            # print(target_aspect_ratio)
            # if target_aspect_ratio[0] * target_aspect_ratio[1] <= 25:
            #     target_aspect_ratio = (2 * orig_width // self.crop_size, 2 * orig_height // self.crop_size)
            # print(target_aspect_ratio)
        else:
            raise ValueError(f"Invalid cropping method: {self.cropping_method}")

        # calculate the target width and height
        target_width = self.crop_size * target_aspect_ratio[0]
        target_height = self.crop_size * target_aspect_ratio[1]
        blocks = target_aspect_ratio[0] * target_aspect_ratio[1]

        # add whole image
        processed_images = []
        processed_images.append(image.resize((self.crop_size, self.crop_size)))
        coords = []
        if blocks == 1:
            return self.image_processor(images=processed_images, return_tensors='pt')['pixel_values'], coords

        # resize the image
        resized_img = image.resize((target_width, target_height))
        for i in range(blocks):
            x0 = (i % (target_width // self.crop_size))
            y0 = (i // (target_width // self.crop_size))
            x1 = ((i % (target_width // self.crop_size)) + 1)
            y1 = ((i // (target_width // self.crop_size)) + 1)

            box = (
                x0 * self.crop_size,
                y0 * self.crop_size,
                x1 * self.crop_size,
                y1 * self.crop_size
            )
            split_img = resized_img.crop(box)
            processed_images.append(split_img)

            coords.append([x0, y0])

            # box = (
            #     (i % (target_width // self.crop_size)) * self.crop_size,
            #     (i // (target_width // self.crop_size)) * self.crop_size,
            #     ((i % (target_width // self.crop_size)) + 1) * self.crop_size,
            #     ((i // (target_width // self.crop_size)) + 1) * self.crop_size
            # )
            # split the image

        assert len(processed_images) == blocks + 1

        return self.image_processor(images=processed_images, return_tensors='pt')['pixel_values'], coords
    

    def preprocess_interleaved_images_and_text(
        self,
        text,
        images=None,
    ):
        """
        Args:
            text (`str`, `List[str]`):
                The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
                (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
                `is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
                text can contain <image> tokens as the placeholder for the image(s) to be inserted.
            images (`PIL.Image.Image`, `List[PIL.Image.Image]`, `List[List[PIL.Image.Image]]`):
                The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
                tensor. In case of a NumPy array/PyTorch tensor, each image should be of shape (C, H, W), where C is a
                number of channels, H and W are image height and width.
                the number of the images should match the number of <image> tokens in the text.
        
        """
        assert text is not None, "text cannot be None."
            
        if images is not None:
            if isinstance(images, Image.Image):
                images = [images]
            if isinstance(images, list) and isinstance(images[0], Image.Image):
                if isinstance(text, str):
                    images = [images]
                elif isinstance(text, list):
                    if len(text) != len(images):
                        raise ValueError("Invalid input text. Number of texts does not match number of images.")
                    images = [[image] for image in images]
            if isinstance(text, str):
                num_images = len(images[0])    
                num_image_tokens = text.count("<image>")
                if num_image_tokens < num_images:
                    # prepend empty image tokens to text
                    if "USER:" in text:
                        text = text.replace("USER:", "USER:" + "<image>" * (num_images - num_image_tokens), 1)
                    elif "Human:" in text:
                        text = text.replace("Human:", "Human:" + "<image>" * (num_images - num_image_tokens), 1)
                    elif "HUMAN:" in text:
                        text = text.replace("HUMAN:", "HUMAN:" + "<image>" * (num_images - num_image_tokens), 1)
                    else:
                        text = "<image>" * (num_images - num_image_tokens) + text
                    # logger.warning("Image Tokens <image> are not provided in the text. Automatically prepending them before the text. This might cause model to behave unexpectedly.")
                elif num_image_tokens > num_images:
                    text = text.split("<image>")
                    for i, t in enumerate(text):
                        if i < num_images:
                            text[i] = t + "<image>"
                    text = "".join(text)
                    logger.warning(f"Number of <image> tokens: {num_image_tokens} exceeds number of images: {num_images}. Automatically removing extra tokens at the end of the text.")
                    # raise ValueError("Invalid input text. Number of <image> tokens exceeds number of images.")
                texts = [text]
            elif isinstance(text, list):
                if not isinstance(text[0], str):
                    raise ValueError("Invalid input text. Each element of text must be a string.")
                for i, t in enumerate(text):
                    num_image_tokens = t.count("<image>")
                    num_images = len(images[i])
                    if num_image_tokens < num_images:
                        # prepend empty image tokens to text
                        if "USER:" in t:
                            t = t.replace("USER:", "USER:" + "<image>" * (num_images - num_image_tokens), 1)
                        elif "Human:" in t:
                            t = t.replace("Human:", "Human:" + "<image>" * (num_images - num_image_tokens), 1)
                        elif "HUMAN:" in t:
                            t = t.replace("HUMAN:", "HUMAN:" + "<image>" * (num_images - num_image_tokens), 1)
                        else:
                            t = "<image>" * (num_images - num_image_tokens) + t
                        # logger.warning("Image Tokens <image> are not provided in the text. Automatically prepending them before the text. This might cause model to behave unexpectedly.")
                    elif num_image_tokens > num_images:
                        t = t.split("<image>")
                        for j, s in enumerate(t):
                            if j < num_images:
                                t[j] = s + "<image>"
                        t = "".join(t)
                        logger.warning(f"Number of <image> tokens: {num_image_tokens} exceeds number of images: {num_images}. Automatically removing extra tokens at the end of the text.")
                        # raise ValueError("Invalid input text. Number of <image> tokens exceeds number of images.")
                    text[i] = t
                texts = text
            else:
                raise ValueError("Invalid input text. text must be a string or a list of strings.")
            assert all([t.count("<image>") == len(images_per_text) for t, images_per_text in zip(texts, images)]), "Number of <image> tokens in text does not match number of images."
            # add image denotation in text before each <image> as "(image {i}: <image>)"
            for i, t in enumerate(texts):
                for j in range(len(images[i])):
                    t = t.replace("<image>", f"(image {j+1}: <Image><IMAGE></Image>)", 1)
                t = t.replace("<IMAGE>", "<image>")
                texts[i] = t
            
        else:
            if isinstance(text, str):
                texts = [text]
            elif isinstance(text, list):
                if not isinstance(text[0], str):
                    raise ValueError("Invalid input text. Each element of text must be a string.")
                texts = text
            else:
                raise ValueError("Invalid input text. text must be a string or a list of strings.")
        
        return texts, images

    def __call__(
        self,
        text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
        keywords_text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
        images: ImageInput = None,
        padding: Union[bool, str, PaddingStrategy] = False,
        truncation: Union[bool, str, TruncationStrategy] = None,
        max_length=None,
        return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH,
        add_image_ids: bool = True,
        cropping_method: str = None,
    ) -> BatchFeature:
        """
        Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
        and `kwargs` arguments to LlamaTokenizerFast's [`~LlamaTokenizerFast.__call__`] if `text` is not `None` to encode
        the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to
        CLIPImageProcessor's [`~CLIPImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring
        of the above two methods for more information.

        Args:
            text (`str`, `List[str]`, `List[List[str]]`):
                The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
                (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
                `is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
            images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
                The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
                tensor. In case of a NumPy array/PyTorch tensor, each image should be of shape (C, H, W), where C is a
                number of channels, H and W are image height and width.
            padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):
                Select a strategy to pad the returned sequences (according to the model's padding side and padding
                index) among:
                - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
                  sequence if provided).
                - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
                  acceptable input length for the model if that argument is not provided.
                - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
                  lengths).
            max_length (`int`, *optional*):
                Maximum length of the returned list and optionally padding length (see above).
            truncation (`bool`, *optional*):
                Activates truncation to cut input sequences longer than `max_length` to `max_length`.
            return_tensors (`str` or [`~utils.TensorType`], *optional*):
                If set, will return tensors of a particular framework. Acceptable values are:

                - `'tf'`: Return TensorFlow `tf.constant` objects.
                - `'pt'`: Return PyTorch `torch.Tensor` objects.
                - `'np'`: Return NumPy `np.ndarray` objects.
                - `'jax'`: Return JAX `jnp.ndarray` objects.

        Returns:
            [`BatchFeature`]: A [`BatchFeature`] with the following fields:

            - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
            - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
              `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
              `None`).
            - **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`. Have shape of (num_images, num_patches, num_tokens, embed_dim)
            - **coords** -- Coordinates of the cropped images. Returned when `images` is not `None`. Have shape of (num_images, num_patches, 2)
        """

        if cropping_method is not None:
            self.cropping_method = cropping_method

        if not self.image_token_index:
            self.image_token_index = self.tokenizer.convert_tokens_to_ids("<image>")

        if add_image_ids:
            text, images = self.preprocess_interleaved_images_and_text(text, images)

        text_inputs = self.tokenizer(
            text,
            padding=padding,
            truncation=truncation,
            max_length=max_length,
            return_tensors=return_tensors,
        )

        if self.use_keyword and keywords_text is not None:
            keywords_prompt_input_ids = self.tokenizer(keywords_text,
                                                padding=padding,
                                                truncation=truncation,
                                                max_length=max_length,
                                                return_tensors=return_tensors)['input_ids']
        else:
            keywords_prompt_input_ids = None

        if images is not None:
            input_ids = text_inputs["input_ids"]
            num_image_tokens = torch.sum(input_ids == self.image_token_index, dim=-1)
            for i, num_image_token in enumerate(num_image_tokens):
                if num_image_token < len(images[i]):
                    images[i] = images[i][:num_image_token]
                    print(f"{len(images[i]) - num_image_token} ({len(images[i])} in total) image tokens in the text are truncated due to the max sequence length; removing the extra images.")
            # flatten images
            images = [image for images_per_text in images for image in images_per_text]
            image_inputs = self.process_images(images)
        else:
            image_inputs = {"pixel_values": None, "coords": None}

        return BatchFeature(data={**text_inputs, **image_inputs, "keyword_prompt_input_ids": keywords_prompt_input_ids})

    def batch_decode(self, *args, **kwargs):
        return self.tokenizer.batch_decode(*args, **kwargs)
    
    def decode(self, *args, **kwargs):
        return self.tokenizer.decode(*args, **kwargs)

    @property
    def model_input_names(self):
        tokenizer_input_names = self.tokenizer.model_input_names
        image_processor_input_names = self.image_processor.model_input_names
        return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
    
    def _right_pad_inputs_with_attention_mask(self, model_inputs: List[Dict]):
        results = {}
        assert len(model_inputs) == 1, "This method only supports a single input, but get {} inputs".format(len(model_inputs))
        for k in model_inputs[0].keys():
            if k == "pixel_values" or k == "coords":
                results[k] = model_inputs[0][k] if model_inputs[0][k] is not None else None
            else:
                results[k] = torch.cat([model_inputs[0][k]], dim=0) if model_inputs[0][k] is not None else None
        return results
    
    @classmethod
    def _get_arguments_from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
        args = []
        
        cache_dir = kwargs.pop("cache_dir", None)
        force_download = kwargs.pop("force_download", False)
        resume_download = kwargs.pop("resume_download", False)
        proxies = kwargs.pop("proxies", None)
        token = kwargs.pop("token", None)
        local_files_only = kwargs.pop("local_files_only", False)
        revision = kwargs.pop("revision", None)
        subfolder = kwargs.pop("subfolder", "")

        from_pipeline = kwargs.pop("_from_pipeline", None)
        from_auto_class = kwargs.pop("_from_auto", False)

        user_agent = {"file_type": "processor", "from_auto_class": from_auto_class}
        if from_pipeline is not None:
            user_agent["using_pipeline"] = from_pipeline

        if is_offline_mode() and not local_files_only:
            logger.info("Offline mode: forcing local_files_only=True")
            local_files_only = True
            
        pretrained_model_name_or_path = str(pretrained_model_name_or_path)
        is_local = os.path.isdir(pretrained_model_name_or_path)
        if os.path.isdir(pretrained_model_name_or_path):
            processor_file = os.path.join(pretrained_model_name_or_path, IMAGE_PROCESSOR_NAME)
        if os.path.isfile(pretrained_model_name_or_path):
            resolved_processor_file = pretrained_model_name_or_path
            is_local = True
        elif is_remote_url(pretrained_model_name_or_path):
            processor_file = pretrained_model_name_or_path
            resolved_processor_file = download_url(pretrained_model_name_or_path)
        else:
            processor_file = IMAGE_PROCESSOR_NAME
            try:
                # Load from local folder or from cache or download from model Hub and cache
                resolved_processor_file = cached_file(
                    pretrained_model_name_or_path,
                    processor_file,
                    cache_dir=cache_dir,
                    force_download=force_download,
                    proxies=proxies,
                    resume_download=resume_download,
                    local_files_only=local_files_only,
                    token=token,
                    user_agent=user_agent,
                    revision=revision,
                    subfolder=subfolder,
                    _raise_exceptions_for_missing_entries=True,
                )
            except EnvironmentError:
                # Raise any environment error raise by `cached_file`. It will have a helpful error message adapted to
                # the original exception.
                raise
            except Exception:
                # For any other exception, we throw a generic error.
                raise EnvironmentError(
                    f"Can't load processor for '{pretrained_model_name_or_path}'. If you were trying to load"
                    " it from 'https://huggingface.co/models', make sure you don't have a local directory with the"
                    f" same name. Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a"
                    f" directory containing a {IMAGE_PROCESSOR_NAME} file"
                )
        
        # Existing processors on the Hub created before #27761 being merged don't have `processor_config.json` (if not
        # updated afterward), and we need to keep `from_pretrained` work. So here it fallbacks to the empty dict.
        # (`cached_file` called using `_raise_exceptions_for_missing_entries=False` to avoid exception)
        # However, for models added in the future, we won't get the expected error if this file is missing.
        if resolved_processor_file is None:
            image_processor_dict = {}

        try:
            # Load processor dict
            with open(resolved_processor_file, "r", encoding="utf-8") as reader:
                text = reader.read()
            image_processor_dict = json.loads(text)

        except json.JSONDecodeError:
            raise EnvironmentError(
                f"It looks like the config file at '{resolved_processor_file}' is not a valid JSON file."
            )
            
        for attribute_name in cls.attributes:
            class_name = getattr(cls, f"{attribute_name}_class")
            if isinstance(class_name, tuple):
                if attribute_name == "tokenizer":
                    classes = tuple(getattr(transformers_module, n) if n is not None else None for n in class_name)
                    use_fast = kwargs.get("use_fast", True)
                    if use_fast and classes[1] is not None:
                        attribute_class = classes[1]
                    else:
                        attribute_class = classes[0]
                elif attribute_name == "image_processor":
                    image_processor_type = image_processor_dict.get("image_processor_type", None)
                    if image_processor_type is not None:
                        assert image_processor_type in class_name, f"Invalid image processor type: {image_processor_type}"
                        attribute_class = getattr(transformers_module, image_processor_type)
                    else:
                        attribute_class = getattr(transformers_module, class_name[0])
                else:
                    raise ValueError(f"Invalid attribute name: {attribute_name}")
            else:
                attribute_class = getattr(transformers_module, class_name)

            args.append(attribute_class.from_pretrained(pretrained_model_name_or_path, **kwargs))
        return args