import math from typing import List, Optional, Union, Dict import torch from PIL import Image import logging import os import json import re from transformers.feature_extraction_sequence_utils import BatchFeature from transformers.image_utils import ImageInput from transformers import ProcessorMixin, ImageProcessingMixin, AutoImageProcessor, AutoTokenizer, AutoProcessor from transformers.tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from transformers.utils import TensorType from transformers.processing_utils import transformers_module from transformers.utils.hub import is_remote_url, download_url, cached_file, is_offline_mode from transformers.utils import IMAGE_PROCESSOR_NAME logger = logging.getLogger(__name__) class GeckoProcessor(ProcessorMixin): attributes = ["image_processor", "tokenizer"] image_processor_class = ("CLIPImageProcessor", "SiglipImageProcessor") tokenizer_class = ("LlamaTokenizer", "LlamaTokenizerFast", "PreTrainedTokenizerFast") def __init__(self, image_processor=None, tokenizer=None, use_keyword=False, crop_size=336, cropping_method='dynamic', **kwargs): super().__init__(image_processor, tokenizer) self.crop_size = crop_size if crop_size is not None else int(image_processor.size['height']) self.use_keyword = use_keyword self.image_token_index = None self.cropping_method = cropping_method self.load_clip_tokenizer() def load_clip_tokenizer(self): if 'clip' in self.image_processor.image_processor_type.lower(): self.clip_tokenizer = AutoTokenizer.from_pretrained('openai/clip-vit-large-patch14-336') elif 'siglip' in self.image_processor.image_processor_type.lower(): self.clip_tokenizer = AutoTokenizer.from_pretrained("google/siglip-so400m-patch14-384") else: raise ValueError(f"Invalid image processor type: {self.image_processor.image_processor_type}") def process_images(self, images: List[Image.Image]): # create documentation """ Parameters: images: List[Image.Image] List of PIL images to be processed Returns: Dict[str, torch.Tensor]: pixel_values: List[torch.Tensor] Pixel values of the images. Has shape (num_images, num_patches, num_channels, height, width) coords: List[List[List[int]]] Coordinates of the cropped images. Has shape (num_images, num_patches, 2) """ pixel_values = [] coords = [] for image in images: outputs, coord = self.dynamic_preprocess(image) pixel_values.append(outputs) coords.append(coord) return {"pixel_values": pixel_values, "coords": coords} def find_closest_aspect_ratio(self, aspect_ratio, target_ratios, width, height, image_size): best_ratio_diff = float('inf') best_ratio = (1, 1) area = width * height for ratio in target_ratios: target_aspect_ratio = ratio[0] / ratio[1] ratio_diff = abs(aspect_ratio - target_aspect_ratio) if ratio_diff < best_ratio_diff: best_ratio_diff = ratio_diff best_ratio = ratio elif ratio_diff == best_ratio_diff: if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]: best_ratio = ratio return best_ratio def dynamic_preprocess(self, image): orig_width, orig_height = image.size aspect_ratio = orig_width / orig_height if self.cropping_method == 'dynamic': max_num = math.ceil(orig_width / self.crop_size) * math.ceil(orig_height / self.crop_size) # calculate the existing image aspect ratio target_ratios = set( (i, j) for n in range(1, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if i * j <= max_num and i * j >= 1) target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1]) # find the closest aspect ratio to the target target_aspect_ratio = self.find_closest_aspect_ratio( aspect_ratio, target_ratios, orig_width, orig_height, self.crop_size) # if target_aspect_ratio[0] * target_aspect_ratio[1] <= 25: # target_aspect_ratio = (int(1.5 * target_aspect_ratio[0]), int(1.5 * target_aspect_ratio[1])) elif self.cropping_method == 'naive': target_aspect_ratio = (orig_width // self.crop_size, orig_height // self.crop_size) # print(target_aspect_ratio) # if target_aspect_ratio[0] * target_aspect_ratio[1] <= 25: # target_aspect_ratio = (2 * orig_width // self.crop_size, 2 * orig_height // self.crop_size) # print(target_aspect_ratio) else: raise ValueError(f"Invalid cropping method: {self.cropping_method}") # calculate the target width and height target_width = self.crop_size * target_aspect_ratio[0] target_height = self.crop_size * target_aspect_ratio[1] blocks = target_aspect_ratio[0] * target_aspect_ratio[1] # add whole image processed_images = [] processed_images.append(image.resize((self.crop_size, self.crop_size))) coords = [] if blocks == 1: return self.image_processor(images=processed_images, return_tensors='pt')['pixel_values'], coords # resize the image resized_img = image.resize((target_width, target_height)) for i in range(blocks): x0 = (i % (target_width // self.crop_size)) y0 = (i // (target_width // self.crop_size)) x1 = ((i % (target_width // self.crop_size)) + 1) y1 = ((i // (target_width // self.crop_size)) + 1) box = ( x0 * self.crop_size, y0 * self.crop_size, x1 * self.crop_size, y1 * self.crop_size ) split_img = resized_img.crop(box) processed_images.append(split_img) coords.append([x0, y0]) # box = ( # (i % (target_width // self.crop_size)) * self.crop_size, # (i // (target_width // self.crop_size)) * self.crop_size, # ((i % (target_width // self.crop_size)) + 1) * self.crop_size, # ((i // (target_width // self.crop_size)) + 1) * self.crop_size # ) # split the image assert len(processed_images) == blocks + 1 return self.image_processor(images=processed_images, return_tensors='pt')['pixel_values'], coords def preprocess_interleaved_images_and_text( self, text, images=None, ): """ Args: text (`str`, `List[str]`): The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set `is_split_into_words=True` (to lift the ambiguity with a batch of sequences). text can contain tokens as the placeholder for the image(s) to be inserted. images (`PIL.Image.Image`, `List[PIL.Image.Image]`, `List[List[PIL.Image.Image]]`): The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch tensor. In case of a NumPy array/PyTorch tensor, each image should be of shape (C, H, W), where C is a number of channels, H and W are image height and width. the number of the images should match the number of tokens in the text. """ assert text is not None, "text cannot be None." if images is not None: if isinstance(images, Image.Image): images = [images] if isinstance(images, list) and isinstance(images[0], Image.Image): if isinstance(text, str): images = [images] elif isinstance(text, list): if len(text) != len(images): raise ValueError("Invalid input text. Number of texts does not match number of images.") images = [[image] for image in images] if isinstance(text, str): num_images = len(images[0]) num_image_tokens = text.count("") if num_image_tokens < num_images: # prepend empty image tokens to text if "USER:" in text: text = text.replace("USER:", "USER:" + "" * (num_images - num_image_tokens), 1) elif "Human:" in text: text = text.replace("Human:", "Human:" + "" * (num_images - num_image_tokens), 1) elif "HUMAN:" in text: text = text.replace("HUMAN:", "HUMAN:" + "" * (num_images - num_image_tokens), 1) else: text = "" * (num_images - num_image_tokens) + text # logger.warning("Image Tokens are not provided in the text. Automatically prepending them before the text. This might cause model to behave unexpectedly.") elif num_image_tokens > num_images: text = text.split("") for i, t in enumerate(text): if i < num_images: text[i] = t + "" text = "".join(text) logger.warning(f"Number of tokens: {num_image_tokens} exceeds number of images: {num_images}. Automatically removing extra tokens at the end of the text.") # raise ValueError("Invalid input text. Number of tokens exceeds number of images.") texts = [text] elif isinstance(text, list): if not isinstance(text[0], str): raise ValueError("Invalid input text. Each element of text must be a string.") for i, t in enumerate(text): num_image_tokens = t.count("") num_images = len(images[i]) if num_image_tokens < num_images: # prepend empty image tokens to text if "USER:" in t: t = t.replace("USER:", "USER:" + "" * (num_images - num_image_tokens), 1) elif "Human:" in t: t = t.replace("Human:", "Human:" + "" * (num_images - num_image_tokens), 1) elif "HUMAN:" in t: t = t.replace("HUMAN:", "HUMAN:" + "" * (num_images - num_image_tokens), 1) else: t = "" * (num_images - num_image_tokens) + t # logger.warning("Image Tokens are not provided in the text. Automatically prepending them before the text. This might cause model to behave unexpectedly.") elif num_image_tokens > num_images: t = t.split("") for j, s in enumerate(t): if j < num_images: t[j] = s + "" t = "".join(t) logger.warning(f"Number of tokens: {num_image_tokens} exceeds number of images: {num_images}. Automatically removing extra tokens at the end of the text.") # raise ValueError("Invalid input text. Number of tokens exceeds number of images.") text[i] = t texts = text else: raise ValueError("Invalid input text. text must be a string or a list of strings.") assert all([t.count("") == len(images_per_text) for t, images_per_text in zip(texts, images)]), "Number of tokens in text does not match number of images." # add image denotation in text before each as "(image {i}: )" for i, t in enumerate(texts): for j in range(len(images[i])): t = t.replace("", f"(image {j+1}: )", 1) t = t.replace("", "") texts[i] = t else: if isinstance(text, str): texts = [text] elif isinstance(text, list): if not isinstance(text[0], str): raise ValueError("Invalid input text. Each element of text must be a string.") texts = text else: raise ValueError("Invalid input text. text must be a string or a list of strings.") return texts, images def __call__( self, text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None, keywords_text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None, images: ImageInput = None, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TruncationStrategy] = None, max_length=None, return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH, add_image_ids: bool = True, cropping_method: str = None, ) -> BatchFeature: """ Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text` and `kwargs` arguments to LlamaTokenizerFast's [`~LlamaTokenizerFast.__call__`] if `text` is not `None` to encode the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to CLIPImageProcessor's [`~CLIPImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring of the above two methods for more information. Args: text (`str`, `List[str]`, `List[List[str]]`): The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set `is_split_into_words=True` (to lift the ambiguity with a batch of sequences). images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`): The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch tensor. In case of a NumPy array/PyTorch tensor, each image should be of shape (C, H, W), where C is a number of channels, H and W are image height and width. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Select a strategy to pad the returned sequences (according to the model's padding side and padding index) among: - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). max_length (`int`, *optional*): Maximum length of the returned list and optionally padding length (see above). truncation (`bool`, *optional*): Activates truncation to cut input sequences longer than `max_length` to `max_length`. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors of a particular framework. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return NumPy `np.ndarray` objects. - `'jax'`: Return JAX `jnp.ndarray` objects. Returns: [`BatchFeature`]: A [`BatchFeature`] with the following fields: - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`. - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not `None`). - **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`. Have shape of (num_images, num_patches, num_tokens, embed_dim) - **coords** -- Coordinates of the cropped images. Returned when `images` is not `None`. Have shape of (num_images, num_patches, 2) """ if cropping_method is not None: self.cropping_method = cropping_method if not self.image_token_index: self.image_token_index = self.tokenizer.convert_tokens_to_ids("") if add_image_ids: text, images = self.preprocess_interleaved_images_and_text(text, images) text_inputs = self.tokenizer( text, padding=padding, truncation=truncation, max_length=max_length, return_tensors=return_tensors, ) if self.use_keyword and keywords_text is not None: keywords_prompt_input_ids = self.tokenizer(keywords_text, padding=padding, truncation=truncation, max_length=max_length, return_tensors=return_tensors)['input_ids'] else: keywords_prompt_input_ids = None if images is not None: input_ids = text_inputs["input_ids"] num_image_tokens = torch.sum(input_ids == self.image_token_index, dim=-1) for i, num_image_token in enumerate(num_image_tokens): if num_image_token < len(images[i]): images[i] = images[i][:num_image_token] print(f"{len(images[i]) - num_image_token} ({len(images[i])} in total) image tokens in the text are truncated due to the max sequence length; removing the extra images.") # flatten images images = [image for images_per_text in images for image in images_per_text] image_inputs = self.process_images(images) else: image_inputs = {"pixel_values": None, "coords": None} return BatchFeature(data={**text_inputs, **image_inputs, "keyword_prompt_input_ids": keywords_prompt_input_ids}) def batch_decode(self, *args, **kwargs): return self.tokenizer.batch_decode(*args, **kwargs) def decode(self, *args, **kwargs): return self.tokenizer.decode(*args, **kwargs) @property def model_input_names(self): tokenizer_input_names = self.tokenizer.model_input_names image_processor_input_names = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names)) def _right_pad_inputs_with_attention_mask(self, model_inputs: List[Dict]): results = {} assert len(model_inputs) == 1, "This method only supports a single input, but get {} inputs".format(len(model_inputs)) for k in model_inputs[0].keys(): if k == "pixel_values" or k == "coords": results[k] = model_inputs[0][k] if model_inputs[0][k] is not None else None else: results[k] = torch.cat([model_inputs[0][k]], dim=0) if model_inputs[0][k] is not None else None return results @classmethod def _get_arguments_from_pretrained(cls, pretrained_model_name_or_path, **kwargs): args = [] cache_dir = kwargs.pop("cache_dir", None) force_download = kwargs.pop("force_download", False) resume_download = kwargs.pop("resume_download", False) proxies = kwargs.pop("proxies", None) token = kwargs.pop("token", None) local_files_only = kwargs.pop("local_files_only", False) revision = kwargs.pop("revision", None) subfolder = kwargs.pop("subfolder", "") from_pipeline = kwargs.pop("_from_pipeline", None) from_auto_class = kwargs.pop("_from_auto", False) user_agent = {"file_type": "processor", "from_auto_class": from_auto_class} if from_pipeline is not None: user_agent["using_pipeline"] = from_pipeline if is_offline_mode() and not local_files_only: logger.info("Offline mode: forcing local_files_only=True") local_files_only = True pretrained_model_name_or_path = str(pretrained_model_name_or_path) is_local = os.path.isdir(pretrained_model_name_or_path) if os.path.isdir(pretrained_model_name_or_path): processor_file = os.path.join(pretrained_model_name_or_path, IMAGE_PROCESSOR_NAME) if os.path.isfile(pretrained_model_name_or_path): resolved_processor_file = pretrained_model_name_or_path is_local = True elif is_remote_url(pretrained_model_name_or_path): processor_file = pretrained_model_name_or_path resolved_processor_file = download_url(pretrained_model_name_or_path) else: processor_file = IMAGE_PROCESSOR_NAME try: # Load from local folder or from cache or download from model Hub and cache resolved_processor_file = cached_file( pretrained_model_name_or_path, processor_file, cache_dir=cache_dir, force_download=force_download, proxies=proxies, resume_download=resume_download, local_files_only=local_files_only, token=token, user_agent=user_agent, revision=revision, subfolder=subfolder, _raise_exceptions_for_missing_entries=True, ) except EnvironmentError: # Raise any environment error raise by `cached_file`. It will have a helpful error message adapted to # the original exception. raise except Exception: # For any other exception, we throw a generic error. raise EnvironmentError( f"Can't load processor for '{pretrained_model_name_or_path}'. If you were trying to load" " it from 'https://huggingface.co/models', make sure you don't have a local directory with the" f" same name. Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a" f" directory containing a {IMAGE_PROCESSOR_NAME} file" ) # Existing processors on the Hub created before #27761 being merged don't have `processor_config.json` (if not # updated afterward), and we need to keep `from_pretrained` work. So here it fallbacks to the empty dict. # (`cached_file` called using `_raise_exceptions_for_missing_entries=False` to avoid exception) # However, for models added in the future, we won't get the expected error if this file is missing. if resolved_processor_file is None: image_processor_dict = {} try: # Load processor dict with open(resolved_processor_file, "r", encoding="utf-8") as reader: text = reader.read() image_processor_dict = json.loads(text) except json.JSONDecodeError: raise EnvironmentError( f"It looks like the config file at '{resolved_processor_file}' is not a valid JSON file." ) for attribute_name in cls.attributes: class_name = getattr(cls, f"{attribute_name}_class") if isinstance(class_name, tuple): if attribute_name == "tokenizer": classes = tuple(getattr(transformers_module, n) if n is not None else None for n in class_name) use_fast = kwargs.get("use_fast", True) if use_fast and classes[1] is not None: attribute_class = classes[1] else: attribute_class = classes[0] elif attribute_name == "image_processor": image_processor_type = image_processor_dict.get("image_processor_type", None) if image_processor_type is not None: assert image_processor_type in class_name, f"Invalid image processor type: {image_processor_type}" attribute_class = getattr(transformers_module, image_processor_type) else: attribute_class = getattr(transformers_module, class_name[0]) else: raise ValueError(f"Invalid attribute name: {attribute_name}") else: attribute_class = getattr(transformers_module, class_name) args.append(attribute_class.from_pretrained(pretrained_model_name_or_path, **kwargs)) return args