Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,624 Bytes
cd4d90a d46329a cd4d90a d46329a 2233e64 cd4d90a d46329a cd4d90a 7576408 cd4d90a 7576408 b518069 4375c79 7576408 cd4d90a d46329a 7576408 9a2f042 cd4d90a 2233e64 7576408 9a2f042 7576408 cd4d90a 7576408 cd4d90a 4375c79 cd4d90a 7576408 cd4d90a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 |
import colorsys
import os
import gradio as gr
import matplotlib.colors as mcolors
import numpy as np
import spaces
import torch
from gradio.themes.utils import sizes
from PIL import Image
from torchvision import transforms
# ----------------- ENV ----------------- #
if torch.cuda.is_available() and torch.cuda.get_device_properties(0).major >= 8:
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
ASSETS_DIR = os.path.join(os.path.dirname(__file__), "assets")
LABELS_TO_IDS = {
"Background": 0,
"Apparel": 1,
"Face Neck": 2,
"Hair": 3,
"Left Foot": 4,
"Left Hand": 5,
"Left Lower Arm": 6,
"Left Lower Leg": 7,
"Left Shoe": 8,
"Left Sock": 9,
"Left Upper Arm": 10,
"Left Upper Leg": 11,
"Lower Clothing": 12,
"Right Foot": 13,
"Right Hand": 14,
"Right Lower Arm": 15,
"Right Lower Leg": 16,
"Right Shoe": 17,
"Right Sock": 18,
"Right Upper Arm": 19,
"Right Upper Leg": 20,
"Torso": 21,
"Upper Clothing": 22,
"Lower Lip": 23,
"Upper Lip": 24,
"Lower Teeth": 25,
"Upper Teeth": 26,
"Tongue": 27,
}
# ----------------- HELPER FUNCTIONS ----------------- #
def get_palette(num_cls):
palette = [0] * (256 * 3)
palette[0:3] = [0, 0, 0]
for j in range(1, num_cls):
hue = (j - 1) / (num_cls - 1)
saturation = 1.0
value = 1.0 if j % 2 == 0 else 0.5
rgb = colorsys.hsv_to_rgb(hue, saturation, value)
r, g, b = [int(x * 255) for x in rgb]
palette[j * 3 : j * 3 + 3] = [r, g, b]
return palette
def create_colormap(palette):
colormap = np.array(palette).reshape(-1, 3) / 255.0
return mcolors.ListedColormap(colormap)
def visualize_mask_with_overlay(img: Image.Image, mask: Image.Image, labels_to_ids: dict[str, int], alpha=0.5):
img_np = np.array(img.convert("RGB"))
mask_np = np.array(mask)
num_cls = len(labels_to_ids)
palette = get_palette(num_cls)
colormap = create_colormap(palette)
overlay = np.zeros((*mask_np.shape, 3), dtype=np.uint8)
for label, idx in labels_to_ids.items():
if idx != 0:
overlay[mask_np == idx] = np.array(colormap(idx)[:3]) * 255
blended = Image.fromarray(np.uint8(img_np * (1 - alpha) + overlay * alpha))
return blended
# ----------------- MODEL ----------------- #
CHECKPOINTS_DIR = os.path.join(ASSETS_DIR, "checkpoints")
CHECKPOINTS = {
"0.3B": "sapiens_0.3b_goliath_best_goliath_mIoU_7673_epoch_194_torchscript.pt2",
"0.6B": "sapiens_0.6b_goliath_best_goliath_mIoU_7777_epoch_178_torchscript.pt2",
"1B": "sapiens_1b_goliath_best_goliath_mIoU_7994_epoch_151_torchscript.pt2",
"2B": "sapiens_2b_goliath_best_goliath_mIoU_8179_epoch_181_torchscript.pt2",
}
def load_model(checkpoint_name: str):
checkpoint_path = os.path.join(CHECKPOINTS_DIR, CHECKPOINTS[checkpoint_name])
model = torch.jit.load(checkpoint_path)
model.eval()
model.to("cuda")
return model
MODELS = {name: load_model(name) for name in CHECKPOINTS.keys()}
@torch.inference_mode()
def run_model(model, input_tensor, height, width):
output = model(input_tensor)
output = torch.nn.functional.interpolate(output, size=(height, width), mode="bilinear", align_corners=False)
_, preds = torch.max(output, 1)
return preds
transform_fn = transforms.Compose(
[
transforms.Resize((1024, 768)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
]
)
# ----------------- CORE FUNCTION ----------------- #
@spaces.GPU
def segment(image: Image.Image, model_name: str) -> Image.Image:
input_tensor = transform_fn(image).unsqueeze(0).to("cuda")
model = MODELS[model_name]
preds = run_model(model, input_tensor, height=image.height, width=image.width)
mask = preds.squeeze(0).cpu().numpy()
mask_image = Image.fromarray(mask.astype("uint8"))
blended_image = visualize_mask_with_overlay(image, mask_image, LABELS_TO_IDS, alpha=0.5)
return blended_image
# ----------------- GRADIO UI ----------------- #
with open("banner.html", "r") as file:
banner = file.read()
with open("tips.html", "r") as file:
tips = file.read()
CUSTOM_CSS = """
.image-container img {
max-width: 512px;
max-height: 512px;
margin: 0 auto;
border-radius: 0px;
.gradio-container {background-color: #fafafa}
"""
with gr.Blocks(css=CUSTOM_CSS, theme=gr.themes.Monochrome(radius_size=sizes.radius_md)) as demo:
gr.HTML(banner)
gr.HTML(tips)
with gr.Row():
with gr.Column():
input_image = gr.Image(label="Input Image", type="pil", format="png")
model_name = gr.Dropdown(
label="Model Version",
choices=list(CHECKPOINTS.keys()),
value="0.3B",
)
example_model = gr.Examples(
inputs=input_image,
examples_per_page=10,
examples=[
os.path.join(ASSETS_DIR, "examples", img)
for img in os.listdir(os.path.join(ASSETS_DIR, "examples"))
],
)
with gr.Column():
result_image = gr.Image(label="Segmentation Result", format="png")
run_button = gr.Button("Run")
gr.Image(os.path.join(ASSETS_DIR, "legend.png"), label="Legend", type="filepath")
run_button.click(
fn=segment,
inputs=[input_image, model_name],
outputs=[result_image],
)
if __name__ == "__main__":
demo.launch(share=False)
|