feishen29's picture
Upload 31 files
d46bdb7 verified
raw
history blame
No virus
33.6 kB
# -*- coding: utf-8 -*-
# @Time : 2024/5/31
# @Author : White Jiang
from diffusers.schedulers import (
DDIMScheduler,
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
)
from diffusers.utils import is_accelerate_available
from diffusers.pipelines.controlnet.pipeline_controlnet import *
import os
import sys
from safetensors import safe_open
BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
sys.path.append(BASE_DIR)
from adapter.resampler import ProjPlusModel
from adapter.attention_processor import RefSAttnProcessor2_0, RefLoraSAttnProcessor2_0, IPAttnProcessor2_0, LoRAIPAttnProcessor2_0
class PipIpaControlNet(StableDiffusionControlNetPipeline):
_optional_components = []
def __init__(
self,
vae,
reference_unet,
unet,
tokenizer,
text_encoder,
controlnet,
image_encoder,
ImgProj,
ip_ckpt,
scheduler: Union[
DDIMScheduler,
PNDMScheduler,
LMSDiscreteScheduler,
EulerDiscreteScheduler,
EulerAncestralDiscreteScheduler,
DPMSolverMultistepScheduler,
],
safety_checker: StableDiffusionSafetyChecker,
feature_extractor: CLIPImageProcessor,
):
super().__init__(vae, text_encoder, tokenizer, unet, controlnet, scheduler, safety_checker, feature_extractor)
self.register_modules(
vae=vae,
reference_unet=reference_unet,
unet=unet,
controlnet=controlnet,
scheduler=scheduler,
tokenizer=tokenizer,
text_encoder=text_encoder,
image_encoder=image_encoder,
ImgProj=ImgProj,
safety_checker=safety_checker,
feature_extractor=feature_extractor
)
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
self.clip_image_processor = CLIPImageProcessor()
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
self.ref_image_processor = VaeImageProcessor(
vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True, do_normalize=False,
)
self.cond_image_processor = VaeImageProcessor(
vae_scale_factor=self.vae_scale_factor,
do_convert_rgb=True,
do_normalize=False,
)
self.ip_ckpt = ip_ckpt
self.num_tokens = 4
# image proj model
self.image_proj_model = self.init_proj()
self.load_ip_adapter()
def init_proj(self):
image_proj_model = ProjPlusModel(
cross_attention_dim=self.unet.config.cross_attention_dim,
id_embeddings_dim=512,
clip_embeddings_dim=self.image_encoder.config.hidden_size,
num_tokens=self.num_tokens,
).to(self.unet.device, dtype=torch.float16)
return image_proj_model
def load_ip_adapter(self):
if os.path.splitext(self.ip_ckpt)[-1] == ".safetensors":
state_dict = {"image_proj": {}, "ip_adapter": {}}
with safe_open(self.ip_ckpt, framework="pt", device="cpu") as f:
for key in f.keys():
if key.startswith("image_proj."):
state_dict["image_proj"][key.replace("image_proj.", "")] = f.get_tensor(key)
elif key.startswith("ip_adapter."):
state_dict["ip_adapter"][key.replace("ip_adapter.", "")] = f.get_tensor(key)
else:
state_dict = torch.load(self.ip_ckpt, map_location="cpu")
self.image_proj_model.load_state_dict(state_dict["image_proj"])
ip_layers = torch.nn.ModuleList(self.unet.attn_processors.values())
ip_layers.load_state_dict(state_dict["ip_adapter"], strict=False)
@property
def cross_attention_kwargs(self):
return self._cross_attention_kwargs
def enable_vae_slicing(self):
self.vae.enable_slicing()
def disable_vae_slicing(self):
self.vae.disable_slicing()
def enable_sequential_cpu_offload(self, gpu_id=0):
if is_accelerate_available():
from accelerate import cpu_offload
else:
raise ImportError("Please install accelerate via `pip install accelerate`")
device = torch.device(f"cuda:{gpu_id}")
for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae]:
if cpu_offloaded_model is not None:
cpu_offload(cpu_offloaded_model, device)
@property
def _execution_device(self):
if self.device != torch.device("meta") or not hasattr(self.unet, "_hf_hook"):
return self.device
for module in self.unet.modules():
if (
hasattr(module, "_hf_hook")
and hasattr(module._hf_hook, "execution_device")
and module._hf_hook.execution_device is not None
):
return torch.device(module._hf_hook.execution_device)
return self.device
def prepare_extra_step_kwargs(self, generator, eta):
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
accepts_eta = "eta" in set(
inspect.signature(self.scheduler.step).parameters.keys()
)
extra_step_kwargs = {}
if accepts_eta:
extra_step_kwargs["eta"] = eta
# check if the scheduler accepts generator
accepts_generator = "generator" in set(
inspect.signature(self.scheduler.step).parameters.keys()
)
if accepts_generator:
extra_step_kwargs["generator"] = generator
return extra_step_kwargs
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_prompt
def encode_prompt(
self,
prompt,
device,
num_images_per_prompt,
do_classifier_free_guidance,
negative_prompt=None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
lora_scale: Optional[float] = None,
clip_skip: Optional[int] = None,
):
if lora_scale is not None and isinstance(self, LoraLoaderMixin):
self._lora_scale = lora_scale
# dynamically adjust the LoRA scale
if not USE_PEFT_BACKEND:
adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)
else:
scale_lora_layers(self.text_encoder, lora_scale)
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
if prompt_embeds is None:
# textual inversion: procecss multi-vector tokens if necessary
if isinstance(self, TextualInversionLoaderMixin):
prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
text_inputs = self.tokenizer(
prompt,
padding="max_length",
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
text_input_ids, untruncated_ids
):
removed_text = self.tokenizer.batch_decode(
untruncated_ids[:, self.tokenizer.model_max_length - 1: -1]
)
logger.warning(
"The following part of your input was truncated because CLIP can only handle sequences up to"
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
)
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
attention_mask = text_inputs.attention_mask.to(device)
else:
attention_mask = None
if clip_skip is None:
prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask)
prompt_embeds = prompt_embeds[0]
else:
prompt_embeds = self.text_encoder(
text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True
)
# Access the `hidden_states` first, that contains a tuple of
# all the hidden states from the encoder layers. Then index into
# the tuple to access the hidden states from the desired layer.
prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)]
# We also need to apply the final LayerNorm here to not mess with the
# representations. The `last_hidden_states` that we typically use for
# obtaining the final prompt representations passes through the LayerNorm
# layer.
prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds)
if self.text_encoder is not None:
prompt_embeds_dtype = self.text_encoder.dtype
elif self.unet is not None:
prompt_embeds_dtype = self.unet.dtype
else:
prompt_embeds_dtype = prompt_embeds.dtype
prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
bs_embed, seq_len, _ = prompt_embeds.shape
# duplicate text embeddings for each generation per prompt, using mps friendly method
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance and negative_prompt_embeds is None:
uncond_tokens: List[str]
if negative_prompt is None:
uncond_tokens = [""] * batch_size
elif prompt is not None and type(prompt) is not type(negative_prompt):
raise TypeError(
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
f" {type(prompt)}."
)
elif isinstance(negative_prompt, str):
uncond_tokens = [negative_prompt]
elif batch_size != len(negative_prompt):
raise ValueError(
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
" the batch size of `prompt`."
)
else:
uncond_tokens = negative_prompt
# textual inversion: procecss multi-vector tokens if necessary
if isinstance(self, TextualInversionLoaderMixin):
uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer)
max_length = prompt_embeds.shape[1]
uncond_input = self.tokenizer(
uncond_tokens,
padding="max_length",
max_length=max_length,
truncation=True,
return_tensors="pt",
)
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
attention_mask = uncond_input.attention_mask.to(device)
else:
attention_mask = None
negative_prompt_embeds = self.text_encoder(
uncond_input.input_ids.to(device),
attention_mask=attention_mask,
)
negative_prompt_embeds = negative_prompt_embeds[0]
if do_classifier_free_guidance:
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
seq_len = negative_prompt_embeds.shape[1]
negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
if isinstance(self, LoraLoaderMixin) and USE_PEFT_BACKEND:
# Retrieve the original scale by scaling back the LoRA layers
unscale_lora_layers(self.text_encoder, lora_scale)
return prompt_embeds, negative_prompt_embeds
def prepare_latents(
self,
batch_size,
num_channels_latents,
width,
height,
dtype,
device,
generator,
latents=None,
):
shape = (
batch_size,
num_channels_latents,
height // self.vae_scale_factor,
width // self.vae_scale_factor,
)
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
)
if latents is None:
latents = randn_tensor(
shape, generator=generator, device=device, dtype=dtype
)
else:
latents = latents.to(device)
# scale the initial noise by the standard deviation required by the scheduler
latents = latents * self.scheduler.init_noise_sigma
return latents
def prepare_condition(
self,
cond_image,
width,
height,
device,
dtype,
do_classififer_free_guidance=False,
):
image = self.cond_image_processor.preprocess(
cond_image, height=height, width=width
).to(dtype=torch.float32)
image = image.to(device=device, dtype=dtype)
if do_classififer_free_guidance:
image = torch.cat([image] * 2)
return image
def get_image_embeds(self, clip_image=None, faceid_embeds=None):
with torch.no_grad():
clip_image_embeds = self.image_encoder(clip_image.to(self.device, dtype=torch.float16),
output_hidden_states=True).hidden_states[-2]
uncond_clip_image_embeds = self.image_encoder(
torch.zeros_like(clip_image).to(self.device, dtype=torch.float16), output_hidden_states=True
).hidden_states[-2]
faceid_embeds = faceid_embeds.to(self.device, dtype=torch.float16)
image_prompt_embeds = self.image_proj_model(faceid_embeds, clip_image_embeds)
uncond_image_prompt_embeds = self.image_proj_model(torch.zeros_like(faceid_embeds),uncond_clip_image_embeds)
return image_prompt_embeds, uncond_image_prompt_embeds
def set_scale(self, scale, lora_scale):
for attn_processor in self.unet.attn_processors.values():
if isinstance(attn_processor, RefLoraSAttnProcessor2_0):
attn_processor.scale = scale
attn_processor.lora_scale = lora_scale
# elif isinstance(attn_processor, RefCAttnProcessor2_0):
# attn_processor.scale = scale
def set_ipa_scale(self, ipa_scale, lora_scale):
for attn_processor in self.unet.attn_processors.values():
if isinstance(attn_processor, LoRAIPAttnProcessor2_0):
attn_processor.scale = ipa_scale
attn_processor.lora_scale = lora_scale
elif isinstance(attn_processor, IPAttnProcessor2_0):
attn_processor.scale = ipa_scale
attn_processor.lora_scale = lora_scale
@torch.no_grad()
def __call__(
self,
prompt,
null_prompt,
negative_prompt,
ref_image,
width,
height,
num_inference_steps,
guidance_scale,
pose_image=None,
ref_clip_image=None,
face_clip_image=None,
faceid_embeds=None,
num_images_per_prompt=1,
image_scale=1.0,
ipa_scale=0.0,
s_lora_scale=0.0,
c_lora_scale=0.0,
num_samples=1,
eta: float = 0.0,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
clip_skip: Optional[int] = None,
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
callback_steps: Optional[int] = 1,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
controlnet_conditioning_scale: Union[float, List[float]] = 1.0,
guess_mode: bool = False,
control_guidance_start: Union[float, List[float]] = 0.0,
control_guidance_end: Union[float, List[float]] = 1.0,
**kwargs,
):
if face_clip_image is None:
self.set_scale(image_scale, lora_scale=0.0)
self.set_ipa_scale(ipa_scale=0.0, lora_scale=0.0)
else:
self.set_scale(image_scale, lora_scale=s_lora_scale)
self.set_ipa_scale(ipa_scale, lora_scale=c_lora_scale)
# controlnet
controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet
# align format for control guidance
if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list):
control_guidance_start = len(control_guidance_end) * [control_guidance_start]
elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list):
control_guidance_end = len(control_guidance_start) * [control_guidance_end]
elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list):
mult = len(controlnet.nets) if isinstance(controlnet, MultiControlNetModel) else 1
control_guidance_start, control_guidance_end = (
mult * [control_guidance_start],
mult * [control_guidance_end],
)
if isinstance(controlnet, MultiControlNetModel) and isinstance(controlnet_conditioning_scale, float):
controlnet_conditioning_scale = [controlnet_conditioning_scale] * len(controlnet.nets)
global_pool_conditions = (
controlnet.config.global_pool_conditions
if isinstance(controlnet, ControlNetModel)
else controlnet.nets[0].config.global_pool_conditions
)
guess_mode = guess_mode or global_pool_conditions
# Default height and width to unet
height = height or self.unet.config.sample_size * self.vae_scale_factor
width = width or self.unet.config.sample_size * self.vae_scale_factor
device = self._execution_device
self._cross_attention_kwargs = cross_attention_kwargs
self._clip_skip = clip_skip
do_classifier_free_guidance = guidance_scale > 1.0
# Prepare timesteps
self.scheduler.set_timesteps(num_inference_steps, device=device)
timesteps = self.scheduler.timesteps
batch_size = 1
if pose_image is not None:
# Prepare control image
if isinstance(controlnet, ControlNetModel):
image = self.prepare_image(
image=pose_image,
width=width,
height=height,
batch_size=batch_size * num_images_per_prompt,
num_images_per_prompt=num_images_per_prompt,
device=device,
dtype=controlnet.dtype,
do_classifier_free_guidance=do_classifier_free_guidance,
guess_mode=guess_mode,
)
if do_classifier_free_guidance and not guess_mode:
image = image.chunk(2)[0]
height, width = image.shape[-2:]
else:
assert False
# print(image.shape)
# 3. Encode input prompt
text_encoder_lora_scale = (
self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
)
prompt_embeds, negative_prompt_embeds = self.encode_prompt(
prompt,
device,
num_images_per_prompt,
do_classifier_free_guidance,
negative_prompt,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
lora_scale=text_encoder_lora_scale,
clip_skip=self.clip_skip,
)
if face_clip_image is not None:
# for face image condition
image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds(face_clip_image, faceid_embeds)
bs_embed, seq_len, _ = image_prompt_embeds.shape
image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1)
image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_samples, 1)
uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
if ref_clip_image is not None:
with torch.no_grad():
image_embeds = self.image_encoder(ref_clip_image.to(device, dtype=prompt_embeds.dtype),
output_hidden_states=True).hidden_states[-2]
image_null_embeds = \
self.image_encoder(torch.zeros_like(ref_clip_image).to(device, dtype=prompt_embeds.dtype),
output_hidden_states=True).hidden_states[-2]
cloth_proj_embed = self.ImgProj(image_embeds)
cloth_null_embeds = self.ImgProj(image_null_embeds)
# cloth_null_embeds = self.ImgProj(torch.zeros_like(image_embeds))
else:
null_prompt_embeds, _ = self.encode_prompt(
null_prompt,
device,
num_images_per_prompt,
do_classifier_free_guidance,
negative_prompt,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
lora_scale=text_encoder_lora_scale,
clip_skip=self.clip_skip,
)
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
if do_classifier_free_guidance:
prompt_embeds_control = torch.cat([negative_prompt_embeds, prompt_embeds])
if ref_clip_image is not None:
null_prompt_embeds = torch.cat([cloth_null_embeds, cloth_proj_embed])
else:
null_prompt_embeds = torch.cat([negative_prompt_embeds, null_prompt_embeds])
if face_clip_image is not None:
prompt_embeds = torch.cat([prompt_embeds, image_prompt_embeds], dim=1)
negative_prompt_embeds = torch.cat([negative_prompt_embeds, uncond_image_prompt_embeds], dim=1)
else:
prompt_embeds = prompt_embeds
negative_prompt_embeds = negative_prompt_embeds
num_channels_latents = self.unet.in_channels
latents = self.prepare_latents(
batch_size * num_images_per_prompt,
num_channels_latents,
width,
height,
prompt_embeds.dtype,
device,
generator,
)
# Prepare extra step kwargs.
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
# Prepare ref image latents
ref_image_tensor = ref_image.to(
dtype=self.vae.dtype, device=self.vae.device
)
ref_image_latents = self.vae.encode(ref_image_tensor).latent_dist.mean
ref_image_latents = ref_image_latents * 0.18215 # (b, 4, h, w)
if pose_image is not None:
# Create tensor stating which controlnets to keep
controlnet_keep = []
for i in range(len(timesteps)):
keeps = [
1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e)
for s, e in zip(control_guidance_start, control_guidance_end)
]
controlnet_keep.append(keeps[0] if isinstance(controlnet, ControlNetModel) else keeps)
# denoising loop
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
# 1. Forward reference image
if i == 0:
_ = self.reference_unet(
ref_image_latents.repeat(
(2 if do_classifier_free_guidance else 1), 1, 1, 1
),
torch.zeros_like(t),
encoder_hidden_states=null_prompt_embeds,
return_dict=False,
)
# get cache tensors
sa_hidden_states = {}
for name in self.reference_unet.attn_processors.keys():
sa_hidden_states[name] = self.reference_unet.attn_processors[name].cache["hidden_states"][
1].unsqueeze(0)
# sa_hidden_states[name][0, :, :] = 0
# 3.1 expand the latents if we are doing classifier free guidance
latent_model_input = (
torch.cat([latents] * 2) if do_classifier_free_guidance else latents
)
latent_model_input = self.scheduler.scale_model_input(
latent_model_input, t
)
# Optionally get Guidance Scale Embedding
timestep_cond = None
if self.unet.config.time_cond_proj_dim is not None:
guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(
batch_size * num_images_per_prompt)
timestep_cond = self.get_guidance_scale_embedding(
guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
).to(device=device, dtype=latents.dtype)
# for control
if pose_image is not None:
# controlnet(s) inference
if guess_mode and self.do_classifier_free_guidance:
# Infer ControlNet only for the conditional batch.
control_model_input = latents
control_model_input = self.scheduler.scale_model_input(control_model_input, t)
controlnet_prompt_embeds = prompt_embeds_control.chunk(2)[1]
# controlnet_prompt_embeds = prompt_embeds
else:
control_model_input = latent_model_input
controlnet_prompt_embeds = prompt_embeds_control
if isinstance(controlnet_keep[i], list):
cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])]
else:
controlnet_cond_scale = controlnet_conditioning_scale
if isinstance(controlnet_cond_scale, list):
controlnet_cond_scale = controlnet_cond_scale[0]
cond_scale = controlnet_cond_scale * controlnet_keep[i]
down_block_res_samples, mid_block_res_sample = self.controlnet(
control_model_input,
t,
encoder_hidden_states=controlnet_prompt_embeds,
controlnet_cond=image,
conditioning_scale=cond_scale,
guess_mode=guess_mode,
return_dict=False,
)
# if do_classifier_free_guidance:
down_block_res_samples_con = []
down_block_res_samples_uncon = []
for down_block in down_block_res_samples:
down_block_res_samples_con.append(down_block[1])
down_block_res_samples_uncon.append(down_block[0])
# for prompt_embeds ref + text
noise_pred = self.unet(
latent_model_input[0].unsqueeze(0),
t,
encoder_hidden_states=prompt_embeds,
cross_attention_kwargs={
"sa_hidden_states": sa_hidden_states,
},
timestep_cond=timestep_cond,
down_block_additional_residuals=down_block_res_samples_con,
mid_block_additional_residual=mid_block_res_sample[1],
added_cond_kwargs=None,
return_dict=False,
)[0]
# for negative_prompt_embeds non text
unc_noise_pred = self.unet(
latent_model_input[1].unsqueeze(0),
t,
encoder_hidden_states=negative_prompt_embeds,
timestep_cond=timestep_cond,
down_block_additional_residuals=down_block_res_samples_uncon,
mid_block_additional_residual=mid_block_res_sample[0],
added_cond_kwargs=None,
return_dict=False,
)[0]
# for no control
else:
noise_pred = self.unet(
latent_model_input[1].unsqueeze(0),
t,
encoder_hidden_states=prompt_embeds,
cross_attention_kwargs={
"sa_hidden_states": sa_hidden_states,
},
timestep_cond=timestep_cond,
added_cond_kwargs=None,
return_dict=False,
)[0]
# for negative_prompt_embeds non text
unc_noise_pred = self.unet(
latent_model_input[0].unsqueeze(0),
t,
encoder_hidden_states=negative_prompt_embeds,
timestep_cond=timestep_cond,
added_cond_kwargs=None,
return_dict=False,
)[0]
# perform guidance
if do_classifier_free_guidance:
# noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred_uncond, noise_pred_text = unc_noise_pred, noise_pred
noise_pred = noise_pred_uncond + guidance_scale * (
noise_pred_text - noise_pred_uncond
)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(
noise_pred, t, latents, **extra_step_kwargs, return_dict=False
)[0]
# call the callback, if provided
if i == len(timesteps) - 1 or (
(i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0
):
progress_bar.update()
if callback is not None and i % callback_steps == 0:
step_idx = i // getattr(self.scheduler, "order", 1)
callback(step_idx, t, latents)
# Post-processing
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False, generator=generator)[0]
do_denormalize = [True] * image.shape[0]
image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=None)