Spaces:
Running
on
Zero
Running
on
Zero
""" | |
This file contains a Processor that can be used to process images with controlnet aux processors | |
""" | |
import io | |
import logging | |
from typing import Dict, Optional, Union | |
from PIL import Image | |
from controlnet_aux import (CannyDetector, ContentShuffleDetector, HEDdetector, | |
LeresDetector, LineartAnimeDetector, | |
LineartDetector, MediapipeFaceDetector, | |
MidasDetector, MLSDdetector, NormalBaeDetector, | |
OpenposeDetector, PidiNetDetector, ZoeDetector, | |
DWposeDetector) | |
LOGGER = logging.getLogger(__name__) | |
MODELS = { | |
# checkpoint models | |
'scribble_hed': {'class': HEDdetector, 'checkpoint': True}, | |
'softedge_hed': {'class': HEDdetector, 'checkpoint': True}, | |
'scribble_hedsafe': {'class': HEDdetector, 'checkpoint': True}, | |
'softedge_hedsafe': {'class': HEDdetector, 'checkpoint': True}, | |
'depth_midas': {'class': MidasDetector, 'checkpoint': True}, | |
'mlsd': {'class': MLSDdetector, 'checkpoint': True}, | |
'openpose': {'class': OpenposeDetector, 'checkpoint': True}, | |
'openpose_face': {'class': OpenposeDetector, 'checkpoint': True}, | |
'openpose_faceonly': {'class': OpenposeDetector, 'checkpoint': True}, | |
'openpose_full': {'class': OpenposeDetector, 'checkpoint': True}, | |
'openpose_hand': {'class': OpenposeDetector, 'checkpoint': True}, | |
'dwpose': {'class': DWposeDetector, 'checkpoint': True}, | |
'scribble_pidinet': {'class': PidiNetDetector, 'checkpoint': True}, | |
'softedge_pidinet': {'class': PidiNetDetector, 'checkpoint': True}, | |
'scribble_pidsafe': {'class': PidiNetDetector, 'checkpoint': True}, | |
'softedge_pidsafe': {'class': PidiNetDetector, 'checkpoint': True}, | |
'normal_bae': {'class': NormalBaeDetector, 'checkpoint': True}, | |
'lineart_coarse': {'class': LineartDetector, 'checkpoint': True}, | |
'lineart_realistic': {'class': LineartDetector, 'checkpoint': True}, | |
'lineart_anime': {'class': LineartAnimeDetector, 'checkpoint': True}, | |
'depth_zoe': {'class': ZoeDetector, 'checkpoint': True}, | |
'depth_leres': {'class': LeresDetector, 'checkpoint': True}, | |
'depth_leres++': {'class': LeresDetector, 'checkpoint': True}, | |
# instantiate | |
'shuffle': {'class': ContentShuffleDetector, 'checkpoint': False}, | |
'mediapipe_face': {'class': MediapipeFaceDetector, 'checkpoint': False}, | |
'canny': {'class': CannyDetector, 'checkpoint': False}, | |
} | |
MODEL_PARAMS = { | |
'scribble_hed': {'scribble': True}, | |
'softedge_hed': {'scribble': False}, | |
'scribble_hedsafe': {'scribble': True, 'safe': True}, | |
'softedge_hedsafe': {'scribble': False, 'safe': True}, | |
'depth_midas': {}, | |
'mlsd': {}, | |
'openpose': {'include_body': True, 'include_hand': False, 'include_face': False}, | |
'openpose_face': {'include_body': True, 'include_hand': False, 'include_face': True}, | |
'openpose_faceonly': {'include_body': False, 'include_hand': False, 'include_face': True}, | |
'openpose_full': {'include_body': True, 'include_hand': True, 'include_face': True}, | |
'openpose_hand': {'include_body': False, 'include_hand': True, 'include_face': False}, | |
'dwpose': {}, | |
'scribble_pidinet': {'safe': False, 'scribble': True}, | |
'softedge_pidinet': {'safe': False, 'scribble': False}, | |
'scribble_pidsafe': {'safe': True, 'scribble': True}, | |
'softedge_pidsafe': {'safe': True, 'scribble': False}, | |
'normal_bae': {}, | |
'lineart_realistic': {'coarse': False}, | |
'lineart_coarse': {'coarse': True}, | |
'lineart_anime': {}, | |
'canny': {}, | |
'shuffle': {}, | |
'depth_zoe': {}, | |
'depth_leres': {'boost': False}, | |
'depth_leres++': {'boost': True}, | |
'mediapipe_face': {}, | |
} | |
CHOICES = f"Choices for the processor are {list(MODELS.keys())}" | |
class Processor: | |
def __init__(self, processor_id: str, params: Optional[Dict] = None) -> None: | |
"""Processor that can be used to process images with controlnet aux processors | |
Args: | |
processor_id (str): processor name, options are 'hed, midas, mlsd, openpose, | |
pidinet, normalbae, lineart, lineart_coarse, lineart_anime, | |
canny, content_shuffle, zoe, mediapipe_face | |
params (Optional[Dict]): parameters for the processor | |
""" | |
LOGGER.info(f"Loading {processor_id}") | |
if processor_id not in MODELS: | |
raise ValueError(f"{processor_id} is not a valid processor id. Please make sure to choose one of {', '.join(MODELS.keys())}") | |
self.processor_id = processor_id | |
self.processor = self.load_processor(self.processor_id) | |
# load default params | |
self.params = MODEL_PARAMS[self.processor_id] | |
# update with user params | |
if params: | |
self.params.update(params) | |
def load_processor(self, processor_id: str) -> 'Processor': | |
"""Load controlnet aux processors | |
Args: | |
processor_id (str): processor name | |
Returns: | |
Processor: controlnet aux processor | |
""" | |
processor = MODELS[processor_id]['class'] | |
# check if the proecssor is a checkpoint model | |
if MODELS[processor_id]['checkpoint']: | |
processor = processor.from_pretrained("lllyasviel/Annotators") | |
else: | |
processor = processor() | |
return processor | |
def __call__(self, image: Union[Image.Image, bytes], | |
to_pil: bool = True) -> Union[Image.Image, bytes]: | |
"""processes an image with a controlnet aux processor | |
Args: | |
image (Union[Image.Image, bytes]): input image in bytes or PIL Image | |
to_pil (bool): whether to return bytes or PIL Image | |
Returns: | |
Union[Image.Image, bytes]: processed image in bytes or PIL Image | |
""" | |
# check if bytes or PIL Image | |
if isinstance(image, bytes): | |
image = Image.open(io.BytesIO(image)).convert("RGB") | |
processed_image = self.processor(image, **self.params) | |
if to_pil: | |
return processed_image | |
else: | |
output_bytes = io.BytesIO() | |
processed_image.save(output_bytes, format='JPEG') | |
return output_bytes.getvalue() | |