import os import cv2 import numpy as np import torch from einops import rearrange from huggingface_hub import hf_hub_download from PIL import Image from ..util import HWC3, resize_image from .api import MiDaSInference class MidasDetector: def __init__(self, model): self.model = model @classmethod def from_pretrained(cls, pretrained_model_or_path, model_type="dpt_hybrid", filename=None, cache_dir=None, local_files_only=False): if pretrained_model_or_path == "lllyasviel/ControlNet": filename = filename or "annotator/ckpts/dpt_hybrid-midas-501f0c75.pt" else: filename = filename or "dpt_hybrid-midas-501f0c75.pt" if os.path.isdir(pretrained_model_or_path): model_path = os.path.join(pretrained_model_or_path, filename) else: model_path = hf_hub_download(pretrained_model_or_path, filename, cache_dir=cache_dir, local_files_only=local_files_only) model = MiDaSInference(model_type=model_type, model_path=model_path) return cls(model) def to(self, device): self.model.to(device) return self def __call__(self, input_image, a=np.pi * 2.0, bg_th=0.1, depth_and_normal=False, detect_resolution=512, image_resolution=512, output_type=None): device = next(iter(self.model.parameters())).device if not isinstance(input_image, np.ndarray): input_image = np.array(input_image, dtype=np.uint8) output_type = output_type or "pil" else: output_type = output_type or "np" input_image = HWC3(input_image) input_image = resize_image(input_image, detect_resolution) assert input_image.ndim == 3 image_depth = input_image with torch.no_grad(): image_depth = torch.from_numpy(image_depth).float() image_depth = image_depth.to(device) image_depth = image_depth / 127.5 - 1.0 image_depth = rearrange(image_depth, 'h w c -> 1 c h w') depth = self.model(image_depth)[0] depth_pt = depth.clone() depth_pt -= torch.min(depth_pt) depth_pt /= torch.max(depth_pt) depth_pt = depth_pt.cpu().numpy() depth_image = (depth_pt * 255.0).clip(0, 255).astype(np.uint8) if depth_and_normal: depth_np = depth.cpu().numpy() x = cv2.Sobel(depth_np, cv2.CV_32F, 1, 0, ksize=3) y = cv2.Sobel(depth_np, cv2.CV_32F, 0, 1, ksize=3) z = np.ones_like(x) * a x[depth_pt < bg_th] = 0 y[depth_pt < bg_th] = 0 normal = np.stack([x, y, z], axis=2) normal /= np.sum(normal ** 2.0, axis=2, keepdims=True) ** 0.5 normal_image = (normal * 127.5 + 127.5).clip(0, 255).astype(np.uint8)[:, :, ::-1] depth_image = HWC3(depth_image) if depth_and_normal: normal_image = HWC3(normal_image) img = resize_image(input_image, image_resolution) H, W, C = img.shape depth_image = cv2.resize(depth_image, (W, H), interpolation=cv2.INTER_LINEAR) if depth_and_normal: normal_image = cv2.resize(normal_image, (W, H), interpolation=cv2.INTER_LINEAR) if output_type == "pil": depth_image = Image.fromarray(depth_image) if depth_and_normal: normal_image = Image.fromarray(normal_image) if depth_and_normal: return depth_image, normal_image else: return depth_image