# based on https://github.com/isl-org/MiDaS import cv2 import os import torch import torch.nn as nn from torchvision.transforms import Compose from .midas.dpt_depth import DPTDepthModel from .midas.midas_net import MidasNet from .midas.midas_net_custom import MidasNet_small from .midas.transforms import Resize, NormalizeImage, PrepareForNet from ..util import annotator_ckpts_path ISL_PATHS = { "dpt_large": os.path.join(annotator_ckpts_path, "dpt_large-midas-2f21e586.pt"), "dpt_hybrid": os.path.join(annotator_ckpts_path, "dpt_hybrid-midas-501f0c75.pt"), "midas_v21": "", "midas_v21_small": "", } remote_model_path = "https://huggingface.co/lllyasviel/ControlNet/resolve/main/annotator/ckpts/dpt_hybrid-midas-501f0c75.pt" def disabled_train(self, mode=True): """Overwrite model.train with this function to make sure train/eval mode does not change anymore.""" return self def load_midas_transform(model_type): # https://github.com/isl-org/MiDaS/blob/master/run.py # load transform only if model_type == "dpt_large": # DPT-Large net_w, net_h = 384, 384 resize_mode = "minimal" normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) elif model_type == "dpt_hybrid": # DPT-Hybrid net_w, net_h = 384, 384 resize_mode = "minimal" normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) elif model_type == "midas_v21": net_w, net_h = 384, 384 resize_mode = "upper_bound" normalization = NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) elif model_type == "midas_v21_small": net_w, net_h = 256, 256 resize_mode = "upper_bound" normalization = NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) else: assert False, f"model_type '{model_type}' not implemented, use: --model_type large" transform = Compose( [ Resize( net_w, net_h, resize_target=None, keep_aspect_ratio=True, ensure_multiple_of=32, resize_method=resize_mode, image_interpolation_method=cv2.INTER_CUBIC, ), normalization, PrepareForNet(), ] ) return transform def load_model(model_type, model_path=None): # https://github.com/isl-org/MiDaS/blob/master/run.py # load network model_path = model_path or ISL_PATHS[model_type] if model_type == "dpt_large": # DPT-Large model = DPTDepthModel( path=model_path, backbone="vitl16_384", non_negative=True, ) net_w, net_h = 384, 384 resize_mode = "minimal" normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) elif model_type == "dpt_hybrid": # DPT-Hybrid if not os.path.exists(model_path): from basicsr.utils.download_util import load_file_from_url load_file_from_url(remote_model_path, model_dir=annotator_ckpts_path) model = DPTDepthModel( path=model_path, backbone="vitb_rn50_384", non_negative=True, ) net_w, net_h = 384, 384 resize_mode = "minimal" normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) elif model_type == "midas_v21": model = MidasNet(model_path, non_negative=True) net_w, net_h = 384, 384 resize_mode = "upper_bound" normalization = NormalizeImage( mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225] ) elif model_type == "midas_v21_small": model = MidasNet_small(model_path, features=64, backbone="efficientnet_lite3", exportable=True, non_negative=True, blocks={'expand': True}) net_w, net_h = 256, 256 resize_mode = "upper_bound" normalization = NormalizeImage( mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225] ) else: print(f"model_type '{model_type}' not implemented, use: --model_type large") assert False transform = Compose( [ Resize( net_w, net_h, resize_target=None, keep_aspect_ratio=True, ensure_multiple_of=32, resize_method=resize_mode, image_interpolation_method=cv2.INTER_CUBIC, ), normalization, PrepareForNet(), ] ) return model.eval(), transform class MiDaSInference(nn.Module): MODEL_TYPES_TORCH_HUB = [ "DPT_Large", "DPT_Hybrid", "MiDaS_small" ] MODEL_TYPES_ISL = [ "dpt_large", "dpt_hybrid", "midas_v21", "midas_v21_small", ] def __init__(self, model_type, model_path): super().__init__() assert (model_type in self.MODEL_TYPES_ISL) model, _ = load_model(model_type, model_path) self.model = model self.model.train = disabled_train def forward(self, x): with torch.no_grad(): prediction = self.model(x) return prediction