Spaces:
Running
on
A10G
Running
on
A10G
File size: 10,003 Bytes
63f899c 446a654 59d9186 63f899c 59d9186 63f899c 0f1045d bd786ec c39b894 63f899c 446a654 a6075c0 59d9186 63f899c 59d9186 751c5b7 59d9186 23a0ba6 59d9186 63f899c 59d9186 63f899c 446a654 63f899c a6075c0 446a654 a6075c0 baa1646 a6075c0 bd786ec a6075c0 446a654 a6075c0 446a654 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 |
import os
import shutil
from huggingface_hub import snapshot_download
import gradio as gr
from gradio_client import Client, handle_file
from mutagen.mp3 import MP3
from pydub import AudioSegment
from PIL import Image
os.chdir(os.path.dirname(os.path.abspath(__file__)))
from scripts.inference import inference_process
import argparse
import uuid
is_shared_ui = True if "fudan-generative-ai/hallo" in os.environ['SPACE_ID'] else False
if(not is_shared_ui):
hallo_dir = snapshot_download(repo_id="fudan-generative-ai/hallo", local_dir="pretrained_models")
def is_mp3(file_path):
try:
audio = MP3(file_path)
return True
except Exception as e:
return False
def convert_mp3_to_wav(mp3_file_path, wav_file_path):
# Load the MP3 file
audio = AudioSegment.from_mp3(mp3_file_path)
# Export as WAV file
audio.export(wav_file_path, format="wav")
return wav_file_path
def trim_audio(file_path, output_path, max_duration=4000):
# Load the audio file
audio = AudioSegment.from_wav(file_path)
# Check the length of the audio in milliseconds
audio_length = len(audio)
# If the audio is longer than the maximum duration, trim it
if audio_length > max_duration:
trimmed_audio = audio[:max_duration]
else:
trimmed_audio = audio
# Export the trimmed audio to a new file
trimmed_audio.export(output_path, format="wav")
return output_path
def add_silence_to_wav(wav_file_path, duration_s=1):
# Load the WAV file
audio = AudioSegment.from_wav(wav_file_path)
# Create 1 second of silence
silence = AudioSegment.silent(duration=duration_s * 1000) # duration is in milliseconds
# Add silence to the end of the audio file
audio_with_silence = audio + silence
# Export the modified audio
audio_with_silence.export(wav_file_path, format="wav")
return wav_file_path
def check_mp3(file_path):
if is_mp3(file_path):
wav_file_path = os.path.splitext(file_path)[0] + '.wav'
converted_audio = convert_mp3_to_wav(file_path, wav_file_path)
print(f"File converted to {wav_file_path}")
return converted_audio
else:
print("The file is not an MP3 file.")
return file_path
def convert_webp_to_png(webp_file):
# Open the WebP image
webp_image = Image.open(webp_file)
# Convert and save as PNG
webp_image.save("png_converted_image.png", "PNG")
return "png_converted_image.png"
def generate_portrait(prompt_image):
if prompt_image is None or prompt_image == "":
raise gr.Error("Can't generate a portrait without a prompt !")
client = Client("AP123/SDXL-Lightning")
result = client.predict(
prompt_image,
"4-Step",
api_name="/generate_image"
)
print(result)
return result
def generate_voice(prompt_audio, voice_description):
if prompt_audio is None or prompt_audio == "" :
raise gr.Error("Can't generate a voice without text to synthetize !")
if voice_description is None or voice_description == "":
gr.Info(
"For better control, You may want to provide a voice character description next time.",
duration = 10,
visible = True
)
client = Client("parler-tts/parler_tts_mini")
result = client.predict(
text=prompt_audio,
description=voice_description,
api_name="/gen_tts"
)
print(result)
return result
def get_whisperspeech(prompt_audio_whisperspeech, audio_to_clone):
client = Client("collabora/WhisperSpeech")
result = client.predict(
multilingual_text=prompt_audio_whisperspeech,
speaker_audio=handle_file(audio_to_clone),
speaker_url="",
cps=14,
api_name="/whisper_speech_demo"
)
print(result)
return result
def run_hallo(source_image, driving_audio, progress=gr.Progress(track_tqdm=True)):
if is_shared_ui:
raise gr.Error("This Space only works in duplicated instances")
unique_id = uuid.uuid4()
args = argparse.Namespace(
config='configs/inference/default.yaml',
source_image=source_image,
driving_audio=driving_audio,
output=f'output-{unique_id}.mp4',
pose_weight=1.0,
face_weight=1.0,
lip_weight=1.0,
face_expand_ratio=1.2,
checkpoint=None
)
inference_process(args)
return f'output-{unique_id}.mp4'
def generate_talking_portrait(portrait, voice):
if portrait is None:
raise gr.Error("Please provide a portrait to animate.")
if voice is None:
raise gr.Error("Please provide audio (4 seconds max).")
# trim audio
input_file = voice
trimmed_output_file = "trimmed_audio.wav"
trimmed_output_file = trim_audio(input_file, trimmed_output_file)
voice = trimmed_output_file
ready_audio = add_silence_to_wav(voice)
print(f"1 second of silence added to {voice}")
# call hallo
talking_portrait_vid = run_hallo(portrait, ready_audio)
return talking_portrait_vid
css = '''
#col-container {
margin: 0 auto;
}
#main-group {
background-color: none;
}
.tabs {
background-color: unset;
}
#image-block {
flex: 1;
}
#video-block {
flex: 9;
}
#audio-block, #audio-clone-elm {
flex: 1;
}
#text-synth, #voice-desc, #text-synth-wsp{
height: 180px;
}
#audio-column, #result-column {
display: flex;
}
#gen-voice-btn {
flex: 1;
}
#parler-tab, #whisperspeech-tab {
padding: 0;
}
#main-submit{
flex: 1;
}
div#warning-ready {
background-color: #ecfdf5;
padding: 0 16px 16px;
margin: 20px 0;
color: #030303!important;
}
div#warning-ready > .gr-prose > h2, div#warning-ready > .gr-prose > p {
color: #057857!important;
}
div#warning-duplicate {
background-color: #ebf5ff;
padding: 0 16px 16px;
margin: 20px 0;
color: #030303!important;
}
div#warning-duplicate > .gr-prose > h2, div#warning-duplicate > .gr-prose > p {
color: #0f4592!important;
}
div#warning-duplicate strong {
color: #0f4592;
}
p.actions {
display: flex;
align-items: center;
margin: 20px 0;
}
div#warning-duplicate .actions a {
display: inline-block;
margin-right: 10px;
}
.dark #warning-duplicate {
background-color: #0c0c0c !important;
border: 1px solid white !important;
}
'''
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("""
# Parler X Hallo
Generate talking portraits
""")
with gr.Group(elem_id="main-group"):
with gr.Row():
with gr.Column():
portrait = gr.Image(
sources=["upload"],
type="filepath",
format="png",
elem_id="image-block"
)
prompt_image = gr.Textbox(
label="Generate image",
lines=3
)
gen_image_btn = gr.Button("Generate portrait (optional)")
with gr.Column(elem_id="audio-column"):
voice = gr.Audio(
type="filepath",
max_length=4000,
elem_id="audio-block"
)
with gr.Tab("Parler TTS", elem_id="parler-tab"):
prompt_audio = gr.Textbox(
label="Text to synthetize",
lines=4,
max_lines=4,
elem_id="text-synth"
)
voice_description = gr.Textbox(
label="Voice description",
lines=4,
max_lines=4,
elem_id="voice-desc"
)
gen_voice_btn = gr.Button("Generate voice (optional)")
with gr.Tab("WhisperSpeech", elem_id="whisperspeech-tab"):
prompt_audio_whisperspeech = gr.Textbox(
label="Text to synthetize",
lines=4,
max_lines=4,
elem_id="text-synth-wsp"
)
audio_to_clone = gr.Audio(
label="Voice to clone",
type="filepath",
elem_id="audio-clone-elm"
)
gen_wsp_voice_btn = gr.Button("Generate voice clone (optional)")
with gr.Column(elem_id="result-column"):
result = gr.Video(
elem_id="video-block"
)
submit_btn = gr.Button("Submit", elem_id="main-submit")
voice.upload(
fn = check_mp3,
inputs = [voice],
outputs = [voice],
queue = False,
show_api = False
)
gen_image_btn.click(
fn = generate_portrait,
inputs = [prompt_image],
outputs = [portrait],
queue=False,
show_api = False
)
gen_voice_btn.click(
fn = generate_voice,
inputs = [prompt_audio, voice_description],
outputs = [voice],
queue=False,
show_api = False
)
gen_wsp_voice_btn.click(
fn = get_whisperspeech,
inputs = [prompt_audio_whisperspeech, audio_to_clone],
outputs = [voice],
queue=False,
show_api = False
)
submit_btn.click(
fn = generate_talking_portrait,
inputs = [portrait, voice],
outputs = [result],
show_api = False
)
demo.queue(max_size=2).launch(show_error=True, show_api=False) |