File size: 40,117 Bytes
5a510e7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 |
# pylint: disable=R0801
# pylint: disable=C0303
"""
This module contains various transformer blocks for different applications, such as BasicTransformerBlock,
TemporalBasicTransformerBlock, and AudioTemporalBasicTransformerBlock. These blocks are used in various models,
such as GLIGEN, UNet, and others. The transformer blocks implement self-attention, cross-attention, feed-forward
networks, and other related functions.
Functions and classes included in this module are:
- BasicTransformerBlock: A basic transformer block with self-attention, cross-attention, and feed-forward layers.
- TemporalBasicTransformerBlock: A transformer block with additional temporal attention mechanisms for video data.
- AudioTemporalBasicTransformerBlock: A transformer block with additional audio-specific mechanisms for audio data.
- zero_module: A function to zero out the parameters of a given module.
For more information on each specific class and function, please refer to the respective docstrings.
"""
from typing import Any, Dict, List, Optional
import torch
from diffusers.models.attention import (AdaLayerNorm, AdaLayerNormZero,
Attention, FeedForward)
from diffusers.models.embeddings import SinusoidalPositionalEmbedding
from einops import rearrange
from torch import nn
class GatedSelfAttentionDense(nn.Module):
"""
A gated self-attention dense layer that combines visual features and object features.
Parameters:
query_dim (`int`): The number of channels in the query.
context_dim (`int`): The number of channels in the context.
n_heads (`int`): The number of heads to use for attention.
d_head (`int`): The number of channels in each head.
"""
def __init__(self, query_dim: int, context_dim: int, n_heads: int, d_head: int):
super().__init__()
# we need a linear projection since we need cat visual feature and obj feature
self.linear = nn.Linear(context_dim, query_dim)
self.attn = Attention(query_dim=query_dim, heads=n_heads, dim_head=d_head)
self.ff = FeedForward(query_dim, activation_fn="geglu")
self.norm1 = nn.LayerNorm(query_dim)
self.norm2 = nn.LayerNorm(query_dim)
self.register_parameter("alpha_attn", nn.Parameter(torch.tensor(0.0)))
self.register_parameter("alpha_dense", nn.Parameter(torch.tensor(0.0)))
self.enabled = True
def forward(self, x: torch.Tensor, objs: torch.Tensor) -> torch.Tensor:
"""
Apply the Gated Self-Attention mechanism to the input tensor `x` and object tensor `objs`.
Args:
x (torch.Tensor): The input tensor.
objs (torch.Tensor): The object tensor.
Returns:
torch.Tensor: The output tensor after applying Gated Self-Attention.
"""
if not self.enabled:
return x
n_visual = x.shape[1]
objs = self.linear(objs)
x = x + self.alpha_attn.tanh() * self.attn(self.norm1(torch.cat([x, objs], dim=1)))[:, :n_visual, :]
x = x + self.alpha_dense.tanh() * self.ff(self.norm2(x))
return x
class BasicTransformerBlock(nn.Module):
r"""
A basic Transformer block.
Parameters:
dim (`int`): The number of channels in the input and output.
num_attention_heads (`int`): The number of heads to use for multi-head attention.
attention_head_dim (`int`): The number of channels in each head.
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
num_embeds_ada_norm (:
obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`.
attention_bias (:
obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter.
only_cross_attention (`bool`, *optional*):
Whether to use only cross-attention layers. In this case two cross attention layers are used.
double_self_attention (`bool`, *optional*):
Whether to use two self-attention layers. In this case no cross attention layers are used.
upcast_attention (`bool`, *optional*):
Whether to upcast the attention computation to float32. This is useful for mixed precision training.
norm_elementwise_affine (`bool`, *optional*, defaults to `True`):
Whether to use learnable elementwise affine parameters for normalization.
norm_type (`str`, *optional*, defaults to `"layer_norm"`):
The normalization layer to use. Can be `"layer_norm"`, `"ada_norm"` or `"ada_norm_zero"`.
final_dropout (`bool` *optional*, defaults to False):
Whether to apply a final dropout after the last feed-forward layer.
attention_type (`str`, *optional*, defaults to `"default"`):
The type of attention to use. Can be `"default"` or `"gated"` or `"gated-text-image"`.
positional_embeddings (`str`, *optional*, defaults to `None`):
The type of positional embeddings to apply to.
num_positional_embeddings (`int`, *optional*, defaults to `None`):
The maximum number of positional embeddings to apply.
"""
def __init__(
self,
dim: int,
num_attention_heads: int,
attention_head_dim: int,
dropout=0.0,
cross_attention_dim: Optional[int] = None,
activation_fn: str = "geglu",
num_embeds_ada_norm: Optional[int] = None,
attention_bias: bool = False,
only_cross_attention: bool = False,
double_self_attention: bool = False,
upcast_attention: bool = False,
norm_elementwise_affine: bool = True,
# 'layer_norm', 'ada_norm', 'ada_norm_zero', 'ada_norm_single'
norm_type: str = "layer_norm",
norm_eps: float = 1e-5,
final_dropout: bool = False,
attention_type: str = "default",
positional_embeddings: Optional[str] = None,
num_positional_embeddings: Optional[int] = None,
):
super().__init__()
self.only_cross_attention = only_cross_attention
self.use_ada_layer_norm_zero = (
num_embeds_ada_norm is not None
) and norm_type == "ada_norm_zero"
self.use_ada_layer_norm = (
num_embeds_ada_norm is not None
) and norm_type == "ada_norm"
self.use_ada_layer_norm_single = norm_type == "ada_norm_single"
self.use_layer_norm = norm_type == "layer_norm"
if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None:
raise ValueError(
f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to"
f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}."
)
if positional_embeddings and (num_positional_embeddings is None):
raise ValueError(
"If `positional_embedding` type is defined, `num_positition_embeddings` must also be defined."
)
if positional_embeddings == "sinusoidal":
self.pos_embed = SinusoidalPositionalEmbedding(
dim, max_seq_length=num_positional_embeddings
)
else:
self.pos_embed = None
# Define 3 blocks. Each block has its own normalization layer.
# 1. Self-Attn
if self.use_ada_layer_norm:
self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm)
elif self.use_ada_layer_norm_zero:
self.norm1 = AdaLayerNormZero(dim, num_embeds_ada_norm)
else:
self.norm1 = nn.LayerNorm(
dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps
)
self.attn1 = Attention(
query_dim=dim,
heads=num_attention_heads,
dim_head=attention_head_dim,
dropout=dropout,
bias=attention_bias,
cross_attention_dim=cross_attention_dim if only_cross_attention else None,
upcast_attention=upcast_attention,
)
# 2. Cross-Attn
if cross_attention_dim is not None or double_self_attention:
# We currently only use AdaLayerNormZero for self attention where there will only be one attention block.
# I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during
# the second cross attention block.
self.norm2 = (
AdaLayerNorm(dim, num_embeds_ada_norm)
if self.use_ada_layer_norm
else nn.LayerNorm(
dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps
)
)
self.attn2 = Attention(
query_dim=dim,
cross_attention_dim=(
cross_attention_dim if not double_self_attention else None
),
heads=num_attention_heads,
dim_head=attention_head_dim,
dropout=dropout,
bias=attention_bias,
upcast_attention=upcast_attention,
) # is self-attn if encoder_hidden_states is none
else:
self.norm2 = None
self.attn2 = None
# 3. Feed-forward
if not self.use_ada_layer_norm_single:
self.norm3 = nn.LayerNorm(
dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps
)
self.ff = FeedForward(
dim,
dropout=dropout,
activation_fn=activation_fn,
final_dropout=final_dropout,
)
# 4. Fuser
if attention_type in {"gated", "gated-text-image"}: # Updated line
self.fuser = GatedSelfAttentionDense(
dim, cross_attention_dim, num_attention_heads, attention_head_dim
)
# 5. Scale-shift for PixArt-Alpha.
if self.use_ada_layer_norm_single:
self.scale_shift_table = nn.Parameter(
torch.randn(6, dim) / dim**0.5)
# let chunk size default to None
self._chunk_size = None
self._chunk_dim = 0
def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int = 0):
"""
Sets the chunk size for feed-forward processing in the transformer block.
Args:
chunk_size (Optional[int]): The size of the chunks to process in feed-forward layers.
If None, the chunk size is set to the maximum possible value.
dim (int, optional): The dimension along which to split the input tensor into chunks. Defaults to 0.
Returns:
None.
"""
self._chunk_size = chunk_size
self._chunk_dim = dim
def forward(
self,
hidden_states: torch.FloatTensor,
attention_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
timestep: Optional[torch.LongTensor] = None,
cross_attention_kwargs: Dict[str, Any] = None,
class_labels: Optional[torch.LongTensor] = None,
) -> torch.FloatTensor:
"""
This function defines the forward pass of the BasicTransformerBlock.
Args:
self (BasicTransformerBlock):
An instance of the BasicTransformerBlock class.
hidden_states (torch.FloatTensor):
A tensor containing the hidden states.
attention_mask (Optional[torch.FloatTensor], optional):
A tensor containing the attention mask. Defaults to None.
encoder_hidden_states (Optional[torch.FloatTensor], optional):
A tensor containing the encoder hidden states. Defaults to None.
encoder_attention_mask (Optional[torch.FloatTensor], optional):
A tensor containing the encoder attention mask. Defaults to None.
timestep (Optional[torch.LongTensor], optional):
A tensor containing the timesteps. Defaults to None.
cross_attention_kwargs (Dict[str, Any], optional):
Additional cross-attention arguments. Defaults to None.
class_labels (Optional[torch.LongTensor], optional):
A tensor containing the class labels. Defaults to None.
Returns:
torch.FloatTensor:
A tensor containing the transformed hidden states.
"""
# Notice that normalization is always applied before the real computation in the following blocks.
# 0. Self-Attention
batch_size = hidden_states.shape[0]
gate_msa = None
scale_mlp = None
shift_mlp = None
gate_mlp = None
if self.use_ada_layer_norm:
norm_hidden_states = self.norm1(hidden_states, timestep)
elif self.use_ada_layer_norm_zero:
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype
)
elif self.use_layer_norm:
norm_hidden_states = self.norm1(hidden_states)
elif self.use_ada_layer_norm_single:
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
self.scale_shift_table[None] +
timestep.reshape(batch_size, 6, -1)
).chunk(6, dim=1)
norm_hidden_states = self.norm1(hidden_states)
norm_hidden_states = norm_hidden_states * \
(1 + scale_msa) + shift_msa
norm_hidden_states = norm_hidden_states.squeeze(1)
else:
raise ValueError("Incorrect norm used")
if self.pos_embed is not None:
norm_hidden_states = self.pos_embed(norm_hidden_states)
# 1. Retrieve lora scale.
lora_scale = (
cross_attention_kwargs.get("scale", 1.0)
if cross_attention_kwargs is not None
else 1.0
)
# 2. Prepare GLIGEN inputs
cross_attention_kwargs = (
cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {}
)
gligen_kwargs = cross_attention_kwargs.pop("gligen", None)
attn_output = self.attn1(
norm_hidden_states,
encoder_hidden_states=(
encoder_hidden_states if self.only_cross_attention else None
),
attention_mask=attention_mask,
**cross_attention_kwargs,
)
if self.use_ada_layer_norm_zero:
attn_output = gate_msa.unsqueeze(1) * attn_output
elif self.use_ada_layer_norm_single:
attn_output = gate_msa * attn_output
hidden_states = attn_output + hidden_states
if hidden_states.ndim == 4:
hidden_states = hidden_states.squeeze(1)
# 2.5 GLIGEN Control
if gligen_kwargs is not None:
hidden_states = self.fuser(hidden_states, gligen_kwargs["objs"])
# 3. Cross-Attention
if self.attn2 is not None:
if self.use_ada_layer_norm:
norm_hidden_states = self.norm2(hidden_states, timestep)
elif self.use_ada_layer_norm_zero or self.use_layer_norm:
norm_hidden_states = self.norm2(hidden_states)
elif self.use_ada_layer_norm_single:
# For PixArt norm2 isn't applied here:
# https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L70C1-L76C103
norm_hidden_states = hidden_states
else:
raise ValueError("Incorrect norm")
if self.pos_embed is not None and self.use_ada_layer_norm_single is False:
norm_hidden_states = self.pos_embed(norm_hidden_states)
attn_output = self.attn2(
norm_hidden_states,
encoder_hidden_states=encoder_hidden_states,
attention_mask=encoder_attention_mask,
**cross_attention_kwargs,
)
hidden_states = attn_output + hidden_states
# 4. Feed-forward
if not self.use_ada_layer_norm_single:
norm_hidden_states = self.norm3(hidden_states)
if self.use_ada_layer_norm_zero:
norm_hidden_states = (
norm_hidden_states *
(1 + scale_mlp[:, None]) + shift_mlp[:, None]
)
if self.use_ada_layer_norm_single:
norm_hidden_states = self.norm2(hidden_states)
norm_hidden_states = norm_hidden_states * \
(1 + scale_mlp) + shift_mlp
ff_output = self.ff(norm_hidden_states, scale=lora_scale)
if self.use_ada_layer_norm_zero:
ff_output = gate_mlp.unsqueeze(1) * ff_output
elif self.use_ada_layer_norm_single:
ff_output = gate_mlp * ff_output
hidden_states = ff_output + hidden_states
if hidden_states.ndim == 4:
hidden_states = hidden_states.squeeze(1)
return hidden_states
class TemporalBasicTransformerBlock(nn.Module):
"""
A PyTorch module that extends the BasicTransformerBlock to include temporal attention mechanisms.
This class is particularly useful for video-related tasks where capturing temporal information within the sequence of frames is necessary.
Attributes:
dim (int): The dimension of the input and output embeddings.
num_attention_heads (int): The number of attention heads in the multi-head self-attention mechanism.
attention_head_dim (int): The dimension of each attention head.
dropout (float): The dropout probability for the attention scores.
cross_attention_dim (Optional[int]): The dimension of the cross-attention mechanism.
activation_fn (str): The activation function used in the feed-forward layer.
num_embeds_ada_norm (Optional[int]): The number of embeddings for adaptive normalization.
attention_bias (bool): If True, uses bias in the attention mechanism.
only_cross_attention (bool): If True, only uses cross-attention.
upcast_attention (bool): If True, upcasts the attention mechanism for better performance.
unet_use_cross_frame_attention (Optional[bool]): If True, uses cross-frame attention in the UNet model.
unet_use_temporal_attention (Optional[bool]): If True, uses temporal attention in the UNet model.
"""
def __init__(
self,
dim: int,
num_attention_heads: int,
attention_head_dim: int,
dropout=0.0,
cross_attention_dim: Optional[int] = None,
activation_fn: str = "geglu",
num_embeds_ada_norm: Optional[int] = None,
attention_bias: bool = False,
only_cross_attention: bool = False,
upcast_attention: bool = False,
unet_use_cross_frame_attention=None,
unet_use_temporal_attention=None,
):
"""
The TemporalBasicTransformerBlock class is a PyTorch module that extends the BasicTransformerBlock to include temporal attention mechanisms.
This is particularly useful for video-related tasks, where the model needs to capture the temporal information within the sequence of frames.
The block consists of self-attention, cross-attention, feed-forward, and temporal attention mechanisms.
dim (int): The dimension of the input and output embeddings.
num_attention_heads (int): The number of attention heads in the multi-head self-attention mechanism.
attention_head_dim (int): The dimension of each attention head.
dropout (float, optional): The dropout probability for the attention scores. Defaults to 0.0.
cross_attention_dim (int, optional): The dimension of the cross-attention mechanism. Defaults to None.
activation_fn (str, optional): The activation function used in the feed-forward layer. Defaults to "geglu".
num_embeds_ada_norm (int, optional): The number of embeddings for adaptive normalization. Defaults to None.
attention_bias (bool, optional): If True, uses bias in the attention mechanism. Defaults to False.
only_cross_attention (bool, optional): If True, only uses cross-attention. Defaults to False.
upcast_attention (bool, optional): If True, upcasts the attention mechanism for better performance. Defaults to False.
unet_use_cross_frame_attention (bool, optional): If True, uses cross-frame attention in the UNet model. Defaults to None.
unet_use_temporal_attention (bool, optional): If True, uses temporal attention in the UNet model. Defaults to None.
Forward method:
hidden_states (torch.FloatTensor): The input hidden states.
encoder_hidden_states (torch.FloatTensor, optional): The encoder hidden states. Defaults to None.
timestep (torch.LongTensor, optional): The current timestep for the transformer model. Defaults to None.
attention_mask (torch.FloatTensor, optional): The attention mask for the self-attention mechanism. Defaults to None.
video_length (int, optional): The length of the video sequence. Defaults to None.
Returns:
torch.FloatTensor: The output hidden states after passing through the TemporalBasicTransformerBlock.
"""
super().__init__()
self.only_cross_attention = only_cross_attention
self.use_ada_layer_norm = num_embeds_ada_norm is not None
self.unet_use_cross_frame_attention = unet_use_cross_frame_attention
self.unet_use_temporal_attention = unet_use_temporal_attention
# SC-Attn
self.attn1 = Attention(
query_dim=dim,
heads=num_attention_heads,
dim_head=attention_head_dim,
dropout=dropout,
bias=attention_bias,
upcast_attention=upcast_attention,
)
self.norm1 = (
AdaLayerNorm(dim, num_embeds_ada_norm)
if self.use_ada_layer_norm
else nn.LayerNorm(dim)
)
# Cross-Attn
if cross_attention_dim is not None:
self.attn2 = Attention(
query_dim=dim,
cross_attention_dim=cross_attention_dim,
heads=num_attention_heads,
dim_head=attention_head_dim,
dropout=dropout,
bias=attention_bias,
upcast_attention=upcast_attention,
)
else:
self.attn2 = None
if cross_attention_dim is not None:
self.norm2 = (
AdaLayerNorm(dim, num_embeds_ada_norm)
if self.use_ada_layer_norm
else nn.LayerNorm(dim)
)
else:
self.norm2 = None
# Feed-forward
self.ff = FeedForward(dim, dropout=dropout,
activation_fn=activation_fn)
self.norm3 = nn.LayerNorm(dim)
self.use_ada_layer_norm_zero = False
# Temp-Attn
# assert unet_use_temporal_attention is not None
if unet_use_temporal_attention is None:
unet_use_temporal_attention = False
if unet_use_temporal_attention:
self.attn_temp = Attention(
query_dim=dim,
heads=num_attention_heads,
dim_head=attention_head_dim,
dropout=dropout,
bias=attention_bias,
upcast_attention=upcast_attention,
)
nn.init.zeros_(self.attn_temp.to_out[0].weight.data)
self.norm_temp = (
AdaLayerNorm(dim, num_embeds_ada_norm)
if self.use_ada_layer_norm
else nn.LayerNorm(dim)
)
def forward(
self,
hidden_states,
encoder_hidden_states=None,
timestep=None,
attention_mask=None,
video_length=None,
):
"""
Forward pass for the TemporalBasicTransformerBlock.
Args:
hidden_states (torch.FloatTensor): The input hidden states with shape (batch_size, seq_len, dim).
encoder_hidden_states (torch.FloatTensor, optional): The encoder hidden states with shape (batch_size, src_seq_len, dim).
timestep (torch.LongTensor, optional): The timestep for the transformer block.
attention_mask (torch.FloatTensor, optional): The attention mask with shape (batch_size, seq_len, seq_len).
video_length (int, optional): The length of the video sequence.
Returns:
torch.FloatTensor: The output tensor after passing through the transformer block with shape (batch_size, seq_len, dim).
"""
norm_hidden_states = (
self.norm1(hidden_states, timestep)
if self.use_ada_layer_norm
else self.norm1(hidden_states)
)
if self.unet_use_cross_frame_attention:
hidden_states = (
self.attn1(
norm_hidden_states,
attention_mask=attention_mask,
video_length=video_length,
)
+ hidden_states
)
else:
hidden_states = (
self.attn1(norm_hidden_states, attention_mask=attention_mask)
+ hidden_states
)
if self.attn2 is not None:
# Cross-Attention
norm_hidden_states = (
self.norm2(hidden_states, timestep)
if self.use_ada_layer_norm
else self.norm2(hidden_states)
)
hidden_states = (
self.attn2(
norm_hidden_states,
encoder_hidden_states=encoder_hidden_states,
attention_mask=attention_mask,
)
+ hidden_states
)
# Feed-forward
hidden_states = self.ff(self.norm3(hidden_states)) + hidden_states
# Temporal-Attention
if self.unet_use_temporal_attention:
d = hidden_states.shape[1]
hidden_states = rearrange(
hidden_states, "(b f) d c -> (b d) f c", f=video_length
)
norm_hidden_states = (
self.norm_temp(hidden_states, timestep)
if self.use_ada_layer_norm
else self.norm_temp(hidden_states)
)
hidden_states = self.attn_temp(norm_hidden_states) + hidden_states
hidden_states = rearrange(
hidden_states, "(b d) f c -> (b f) d c", d=d)
return hidden_states
class AudioTemporalBasicTransformerBlock(nn.Module):
"""
A PyTorch module designed to handle audio data within a transformer framework, including temporal attention mechanisms.
Attributes:
dim (int): The dimension of the input and output embeddings.
num_attention_heads (int): The number of attention heads.
attention_head_dim (int): The dimension of each attention head.
dropout (float): The dropout probability.
cross_attention_dim (Optional[int]): The dimension of the cross-attention mechanism.
activation_fn (str): The activation function for the feed-forward network.
num_embeds_ada_norm (Optional[int]): The number of embeddings for adaptive normalization.
attention_bias (bool): If True, uses bias in the attention mechanism.
only_cross_attention (bool): If True, only uses cross-attention.
upcast_attention (bool): If True, upcasts the attention mechanism to float32.
unet_use_cross_frame_attention (Optional[bool]): If True, uses cross-frame attention in UNet.
unet_use_temporal_attention (Optional[bool]): If True, uses temporal attention in UNet.
depth (int): The depth of the transformer block.
unet_block_name (Optional[str]): The name of the UNet block.
stack_enable_blocks_name (Optional[List[str]]): The list of enabled blocks in the stack.
stack_enable_blocks_depth (Optional[List[int]]): The list of depths for the enabled blocks in the stack.
"""
def __init__(
self,
dim: int,
num_attention_heads: int,
attention_head_dim: int,
dropout=0.0,
cross_attention_dim: Optional[int] = None,
activation_fn: str = "geglu",
num_embeds_ada_norm: Optional[int] = None,
attention_bias: bool = False,
only_cross_attention: bool = False,
upcast_attention: bool = False,
unet_use_cross_frame_attention=None,
unet_use_temporal_attention=None,
depth=0,
unet_block_name=None,
stack_enable_blocks_name: Optional[List[str]] = None,
stack_enable_blocks_depth: Optional[List[int]] = None,
):
"""
Initializes the AudioTemporalBasicTransformerBlock module.
Args:
dim (int): The dimension of the input and output embeddings.
num_attention_heads (int): The number of attention heads in the multi-head self-attention mechanism.
attention_head_dim (int): The dimension of each attention head.
dropout (float, optional): The dropout probability for the attention mechanism. Defaults to 0.0.
cross_attention_dim (Optional[int], optional): The dimension of the cross-attention mechanism. Defaults to None.
activation_fn (str, optional): The activation function to be used in the feed-forward network. Defaults to "geglu".
num_embeds_ada_norm (Optional[int], optional): The number of embeddings for adaptive normalization. Defaults to None.
attention_bias (bool, optional): If True, uses bias in the attention mechanism. Defaults to False.
only_cross_attention (bool, optional): If True, only uses cross-attention. Defaults to False.
upcast_attention (bool, optional): If True, upcasts the attention mechanism to float32. Defaults to False.
unet_use_cross_frame_attention (Optional[bool], optional): If True, uses cross-frame attention in UNet. Defaults to None.
unet_use_temporal_attention (Optional[bool], optional): If True, uses temporal attention in UNet. Defaults to None.
depth (int, optional): The depth of the transformer block. Defaults to 0.
unet_block_name (Optional[str], optional): The name of the UNet block. Defaults to None.
stack_enable_blocks_name (Optional[List[str]], optional): The list of enabled blocks in the stack. Defaults to None.
stack_enable_blocks_depth (Optional[List[int]], optional): The list of depths for the enabled blocks in the stack. Defaults to None.
"""
super().__init__()
self.only_cross_attention = only_cross_attention
self.use_ada_layer_norm = num_embeds_ada_norm is not None
self.unet_use_cross_frame_attention = unet_use_cross_frame_attention
self.unet_use_temporal_attention = unet_use_temporal_attention
self.unet_block_name = unet_block_name
self.depth = depth
zero_conv_full = nn.Conv2d(
dim, dim, kernel_size=1)
self.zero_conv_full = zero_module(zero_conv_full)
zero_conv_face = nn.Conv2d(
dim, dim, kernel_size=1)
self.zero_conv_face = zero_module(zero_conv_face)
zero_conv_lip = nn.Conv2d(
dim, dim, kernel_size=1)
self.zero_conv_lip = zero_module(zero_conv_lip)
# SC-Attn
self.attn1 = Attention(
query_dim=dim,
heads=num_attention_heads,
dim_head=attention_head_dim,
dropout=dropout,
bias=attention_bias,
upcast_attention=upcast_attention,
)
self.norm1 = (
AdaLayerNorm(dim, num_embeds_ada_norm)
if self.use_ada_layer_norm
else nn.LayerNorm(dim)
)
# Cross-Attn
if cross_attention_dim is not None:
if (stack_enable_blocks_name is not None and
stack_enable_blocks_depth is not None and
self.unet_block_name in stack_enable_blocks_name and
self.depth in stack_enable_blocks_depth):
self.attn2_0 = Attention(
query_dim=dim,
cross_attention_dim=cross_attention_dim,
heads=num_attention_heads,
dim_head=attention_head_dim,
dropout=dropout,
bias=attention_bias,
upcast_attention=upcast_attention,
)
self.attn2_1 = Attention(
query_dim=dim,
cross_attention_dim=cross_attention_dim,
heads=num_attention_heads,
dim_head=attention_head_dim,
dropout=dropout,
bias=attention_bias,
upcast_attention=upcast_attention,
)
self.attn2_2 = Attention(
query_dim=dim,
cross_attention_dim=cross_attention_dim,
heads=num_attention_heads,
dim_head=attention_head_dim,
dropout=dropout,
bias=attention_bias,
upcast_attention=upcast_attention,
)
self.attn2 = None
else:
self.attn2 = Attention(
query_dim=dim,
cross_attention_dim=cross_attention_dim,
heads=num_attention_heads,
dim_head=attention_head_dim,
dropout=dropout,
bias=attention_bias,
upcast_attention=upcast_attention,
)
self.attn2_0=None
else:
self.attn2 = None
self.attn2_0 = None
if cross_attention_dim is not None:
self.norm2 = (
AdaLayerNorm(dim, num_embeds_ada_norm)
if self.use_ada_layer_norm
else nn.LayerNorm(dim)
)
else:
self.norm2 = None
# Feed-forward
self.ff = FeedForward(dim, dropout=dropout,
activation_fn=activation_fn)
self.norm3 = nn.LayerNorm(dim)
self.use_ada_layer_norm_zero = False
def forward(
self,
hidden_states,
encoder_hidden_states=None,
timestep=None,
attention_mask=None,
full_mask=None,
face_mask=None,
lip_mask=None,
motion_scale=None,
video_length=None,
):
"""
Forward pass for the AudioTemporalBasicTransformerBlock.
Args:
hidden_states (torch.FloatTensor): The input hidden states.
encoder_hidden_states (torch.FloatTensor, optional): The encoder hidden states. Defaults to None.
timestep (torch.LongTensor, optional): The timestep for the transformer block. Defaults to None.
attention_mask (torch.FloatTensor, optional): The attention mask. Defaults to None.
full_mask (torch.FloatTensor, optional): The full mask. Defaults to None.
face_mask (torch.FloatTensor, optional): The face mask. Defaults to None.
lip_mask (torch.FloatTensor, optional): The lip mask. Defaults to None.
video_length (int, optional): The length of the video. Defaults to None.
Returns:
torch.FloatTensor: The output tensor after passing through the AudioTemporalBasicTransformerBlock.
"""
norm_hidden_states = (
self.norm1(hidden_states, timestep)
if self.use_ada_layer_norm
else self.norm1(hidden_states)
)
if self.unet_use_cross_frame_attention:
hidden_states = (
self.attn1(
norm_hidden_states,
attention_mask=attention_mask,
video_length=video_length,
)
+ hidden_states
)
else:
hidden_states = (
self.attn1(norm_hidden_states, attention_mask=attention_mask)
+ hidden_states
)
if self.attn2 is not None:
# Cross-Attention
norm_hidden_states = (
self.norm2(hidden_states, timestep)
if self.use_ada_layer_norm
else self.norm2(hidden_states)
)
hidden_states = self.attn2(
norm_hidden_states,
encoder_hidden_states=encoder_hidden_states,
attention_mask=attention_mask,
) + hidden_states
elif self.attn2_0 is not None:
norm_hidden_states = (
self.norm2(hidden_states, timestep)
if self.use_ada_layer_norm
else self.norm2(hidden_states)
)
level = self.depth
full_hidden_states = (
self.attn2_0(
norm_hidden_states,
encoder_hidden_states=encoder_hidden_states,
attention_mask=attention_mask,
) * full_mask[level][:, :, None]
)
bz, sz, c = full_hidden_states.shape
sz_sqrt = int(sz ** 0.5)
full_hidden_states = full_hidden_states.reshape(
bz, sz_sqrt, sz_sqrt, c).permute(0, 3, 1, 2)
full_hidden_states = self.zero_conv_full(full_hidden_states).permute(0, 2, 3, 1).reshape(bz, -1, c)
face_hidden_state = (
self.attn2_1(
norm_hidden_states,
encoder_hidden_states=encoder_hidden_states,
attention_mask=attention_mask,
) * face_mask[level][:, :, None]
)
face_hidden_state = face_hidden_state.reshape(
bz, sz_sqrt, sz_sqrt, c).permute(0, 3, 1, 2)
face_hidden_state = self.zero_conv_face(
face_hidden_state).permute(0, 2, 3, 1).reshape(bz, -1, c)
lip_hidden_state = (
self.attn2_2(
norm_hidden_states,
encoder_hidden_states=encoder_hidden_states,
attention_mask=attention_mask,
) * lip_mask[level][:, :, None]
) # [32, 4096, 320]
lip_hidden_state = lip_hidden_state.reshape(
bz, sz_sqrt, sz_sqrt, c).permute(0, 3, 1, 2)
lip_hidden_state = self.zero_conv_lip(
lip_hidden_state).permute(0, 2, 3, 1).reshape(bz, -1, c)
if motion_scale is not None:
hidden_states = (
motion_scale[0] * full_hidden_states +
motion_scale[1] * face_hidden_state +
motion_scale[2] * lip_hidden_state + hidden_states
)
else:
hidden_states = (
full_hidden_states +
face_hidden_state +
lip_hidden_state + hidden_states
)
# Feed-forward
hidden_states = self.ff(self.norm3(hidden_states)) + hidden_states
return hidden_states
def zero_module(module):
"""
Zeroes out the parameters of a given module.
Args:
module (nn.Module): The module whose parameters need to be zeroed out.
Returns:
None.
"""
for p in module.parameters():
nn.init.zeros_(p)
return module
|