Spaces:
Running
on
A10G
Running
on
A10G
File size: 10,140 Bytes
5a510e7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 |
# pylint: disable=R0801
"""
This module implements the Transformer3DModel, a PyTorch model designed for processing
3D data such as videos. It extends ModelMixin and ConfigMixin to provide a transformer
model with support for gradient checkpointing and various types of attention mechanisms.
The model can be configured with different parameters such as the number of attention heads,
attention head dimension, and the number of layers. It also supports the use of audio modules
for enhanced feature extraction from video data.
"""
from dataclasses import dataclass
from typing import Optional
import torch
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.models import ModelMixin
from diffusers.utils import BaseOutput
from einops import rearrange, repeat
from torch import nn
from .attention import (AudioTemporalBasicTransformerBlock,
TemporalBasicTransformerBlock)
@dataclass
class Transformer3DModelOutput(BaseOutput):
"""
The output of the [`Transformer3DModel`].
Attributes:
sample (`torch.FloatTensor`):
The output tensor from the transformer model, which is the result of processing the input
hidden states through the transformer blocks and any subsequent layers.
"""
sample: torch.FloatTensor
class Transformer3DModel(ModelMixin, ConfigMixin):
"""
Transformer3DModel is a PyTorch model that extends `ModelMixin` and `ConfigMixin` to create a 3D transformer model.
It implements the forward pass for processing input hidden states, encoder hidden states, and various types of attention masks.
The model supports gradient checkpointing, which can be enabled by calling the `enable_gradient_checkpointing()` method.
"""
_supports_gradient_checkpointing = True
@register_to_config
def __init__(
self,
num_attention_heads: int = 16,
attention_head_dim: int = 88,
in_channels: Optional[int] = None,
num_layers: int = 1,
dropout: float = 0.0,
norm_num_groups: int = 32,
cross_attention_dim: Optional[int] = None,
attention_bias: bool = False,
activation_fn: str = "geglu",
num_embeds_ada_norm: Optional[int] = None,
use_linear_projection: bool = False,
only_cross_attention: bool = False,
upcast_attention: bool = False,
unet_use_cross_frame_attention=None,
unet_use_temporal_attention=None,
use_audio_module=False,
depth=0,
unet_block_name=None,
stack_enable_blocks_name = None,
stack_enable_blocks_depth = None,
):
super().__init__()
self.use_linear_projection = use_linear_projection
self.num_attention_heads = num_attention_heads
self.attention_head_dim = attention_head_dim
inner_dim = num_attention_heads * attention_head_dim
self.use_audio_module = use_audio_module
# Define input layers
self.in_channels = in_channels
self.norm = torch.nn.GroupNorm(
num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True
)
if use_linear_projection:
self.proj_in = nn.Linear(in_channels, inner_dim)
else:
self.proj_in = nn.Conv2d(
in_channels, inner_dim, kernel_size=1, stride=1, padding=0
)
if use_audio_module:
self.transformer_blocks = nn.ModuleList(
[
AudioTemporalBasicTransformerBlock(
inner_dim,
num_attention_heads,
attention_head_dim,
dropout=dropout,
cross_attention_dim=cross_attention_dim,
activation_fn=activation_fn,
num_embeds_ada_norm=num_embeds_ada_norm,
attention_bias=attention_bias,
only_cross_attention=only_cross_attention,
upcast_attention=upcast_attention,
unet_use_cross_frame_attention=unet_use_cross_frame_attention,
unet_use_temporal_attention=unet_use_temporal_attention,
depth=depth,
unet_block_name=unet_block_name,
stack_enable_blocks_name=stack_enable_blocks_name,
stack_enable_blocks_depth=stack_enable_blocks_depth,
)
for d in range(num_layers)
]
)
else:
# Define transformers blocks
self.transformer_blocks = nn.ModuleList(
[
TemporalBasicTransformerBlock(
inner_dim,
num_attention_heads,
attention_head_dim,
dropout=dropout,
cross_attention_dim=cross_attention_dim,
activation_fn=activation_fn,
num_embeds_ada_norm=num_embeds_ada_norm,
attention_bias=attention_bias,
only_cross_attention=only_cross_attention,
upcast_attention=upcast_attention,
)
for d in range(num_layers)
]
)
# 4. Define output layers
if use_linear_projection:
self.proj_out = nn.Linear(in_channels, inner_dim)
else:
self.proj_out = nn.Conv2d(
inner_dim, in_channels, kernel_size=1, stride=1, padding=0
)
self.gradient_checkpointing = False
def _set_gradient_checkpointing(self, module, value=False):
if hasattr(module, "gradient_checkpointing"):
module.gradient_checkpointing = value
def forward(
self,
hidden_states,
encoder_hidden_states=None,
attention_mask=None,
full_mask=None,
face_mask=None,
lip_mask=None,
motion_scale=None,
timestep=None,
return_dict: bool = True,
):
"""
Forward pass for the Transformer3DModel.
Args:
hidden_states (torch.Tensor): The input hidden states.
encoder_hidden_states (torch.Tensor, optional): The input encoder hidden states.
attention_mask (torch.Tensor, optional): The attention mask.
full_mask (torch.Tensor, optional): The full mask.
face_mask (torch.Tensor, optional): The face mask.
lip_mask (torch.Tensor, optional): The lip mask.
timestep (int, optional): The current timestep.
return_dict (bool, optional): Whether to return a dictionary or a tuple.
Returns:
output (Union[Tuple, BaseOutput]): The output of the Transformer3DModel.
"""
# Input
assert (
hidden_states.dim() == 5
), f"Expected hidden_states to have ndim=5, but got ndim={hidden_states.dim()}."
video_length = hidden_states.shape[2]
hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w")
# TODO
if self.use_audio_module:
encoder_hidden_states = rearrange(
encoder_hidden_states,
"bs f margin dim -> (bs f) margin dim",
)
else:
if encoder_hidden_states.shape[0] != hidden_states.shape[0]:
encoder_hidden_states = repeat(
encoder_hidden_states, "b n c -> (b f) n c", f=video_length
)
batch, _, height, weight = hidden_states.shape
residual = hidden_states
hidden_states = self.norm(hidden_states)
if not self.use_linear_projection:
hidden_states = self.proj_in(hidden_states)
inner_dim = hidden_states.shape[1]
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(
batch, height * weight, inner_dim
)
else:
inner_dim = hidden_states.shape[1]
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(
batch, height * weight, inner_dim
)
hidden_states = self.proj_in(hidden_states)
# Blocks
motion_frames = []
for _, block in enumerate(self.transformer_blocks):
if isinstance(block, TemporalBasicTransformerBlock):
hidden_states, motion_frame_fea = block(
hidden_states,
encoder_hidden_states=encoder_hidden_states,
timestep=timestep,
video_length=video_length,
)
motion_frames.append(motion_frame_fea)
else:
hidden_states = block(
hidden_states, # shape [2, 4096, 320]
encoder_hidden_states=encoder_hidden_states, # shape [2, 20, 640]
attention_mask=attention_mask,
full_mask=full_mask,
face_mask=face_mask,
lip_mask=lip_mask,
timestep=timestep,
video_length=video_length,
motion_scale=motion_scale,
)
# Output
if not self.use_linear_projection:
hidden_states = (
hidden_states.reshape(batch, height, weight, inner_dim)
.permute(0, 3, 1, 2)
.contiguous()
)
hidden_states = self.proj_out(hidden_states)
else:
hidden_states = self.proj_out(hidden_states)
hidden_states = (
hidden_states.reshape(batch, height, weight, inner_dim)
.permute(0, 3, 1, 2)
.contiguous()
)
output = hidden_states + residual
output = rearrange(output, "(b f) c h w -> b c f h w", f=video_length)
if not return_dict:
return (output, motion_frames)
return Transformer3DModelOutput(sample=output)
|