Spaces:
Running
on
A10G
Running
on
A10G
File size: 17,765 Bytes
63f899c 446a654 5b8134f 59d9186 63f899c 59d9186 63f899c e8b9548 bd786ec ec5560f dcda854 446a654 dcda854 446a654 62e5071 446a654 62e5071 446a654 dcda854 446a654 dcda854 e7e9e9b dcda854 446a654 5b8134f dcda854 446a654 dcda854 62e5071 446a654 dcda854 62e5071 dcda854 446a654 dcda854 446a654 dcda854 446a654 dcda854 446a654 dcda854 446a654 dcda854 446a654 dcda854 446a654 dcda854 446a654 dcda854 f634467 dcda854 446a654 dcda854 59d9186 63f899c dcda854 63f899c 59d9186 63f899c dcda854 446a654 dcda854 446a654 dcda854 62e5071 dcda854 446a654 dcda854 446a654 5b8134f 686542a dcda854 5b8134f 446a654 63f899c a6075c0 446a654 dcda854 446a654 f634467 446a654 dcda854 f634467 dcda854 446a654 bafa7b4 446a654 bafa7b4 446a654 dcda854 a6075c0 baa1646 731f00e a6075c0 bd786ec a6075c0 446a654 dcda854 446a654 dcda854 446a654 dcda854 446a654 dcda854 446a654 dcda854 446a654 dcda854 446a654 dcda854 446a654 dcda854 446a654 dcda854 446a654 dcda854 446a654 dcda854 446a654 dcda854 446a654 f634467 446a654 dcda854 446a654 dcda854 446a654 e7e9e9b 446a654 dcda854 446a654 a6075c0 446a654 dcda854 446a654 dcda854 446a654 dcda854 446a654 dcda854 446a654 f634467 446a654 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 |
import os
import shutil
from huggingface_hub import snapshot_download
import gradio as gr
from gradio_client import Client, handle_file
from mutagen.mp3 import MP3
from pydub import AudioSegment
from PIL import Image
import ffmpeg
os.chdir(os.path.dirname(os.path.abspath(__file__)))
from scripts.inference import inference_process
import argparse
import uuid
is_shared_ui = True if "fffiloni/tts-hallo-talking-portrait" in os.environ['SPACE_ID'] else False
hallo_dir = snapshot_download(repo_id="fudan-generative-ai/hallo", local_dir="pretrained_models")
AUDIO_MAX_DURATION = 4000
#############
# UTILITIES #
#############
def is_mp3(file_path):
try:
audio = MP3(file_path)
return True
except Exception as e:
return False
def convert_mp3_to_wav(mp3_file_path, wav_file_path):
# Load the MP3 file
audio = AudioSegment.from_mp3(mp3_file_path)
# Export as WAV file
audio.export(wav_file_path, format="wav")
return wav_file_path
def trim_audio(file_path, output_path, max_duration):
# Load the audio file
audio = AudioSegment.from_wav(file_path)
# Check the length of the audio in milliseconds
audio_length = len(audio)
# If the audio is longer than the maximum duration, trim it
if audio_length > max_duration:
trimmed_audio = audio[:max_duration]
else:
trimmed_audio = audio
# Export the trimmed audio to a new file
trimmed_audio.export(output_path, format="wav")
return output_path
def add_silence_to_wav(wav_file_path, duration_s=1):
# Load the WAV file
audio = AudioSegment.from_wav(wav_file_path)
# Create 1 second of silence
silence = AudioSegment.silent(duration=duration_s * 1000) # duration is in milliseconds
# Add silence to the end of the audio file
audio_with_silence = audio + silence
# Export the modified audio
audio_with_silence.export(wav_file_path, format="wav")
return wav_file_path
def check_mp3(file_path):
if is_mp3(file_path):
unique_id = uuid.uuid4()
wav_file_path = f"{os.path.splitext(file_path)[0]}-{unique_id}.wav"
converted_audio = convert_mp3_to_wav(file_path, wav_file_path)
print(f"File converted to {wav_file_path}")
return converted_audio, gr.update(value=converted_audio, visible=True)
else:
print("The file is not an MP3 file.")
return file_path, gr.update(value=file_path, visible=True)
def check_and_convert_webp_to_png(input_path, output_path):
try:
# Open the image file
with Image.open(input_path) as img:
# Check if the image is in WebP format
if img.format == 'WEBP':
# Convert and save as PNG
img.save(output_path, 'PNG')
print(f"Converted {input_path} to {output_path}")
return output_path
else:
print(f"The file {input_path} is not in WebP format.")
return input_path
except IOError:
print(f"Cannot open {input_path}. The file might not exist or is not an image.")
def convert_user_uploded_webp(input_path):
# convert to png if necessary
input_file = input_path
unique_id = uuid.uuid4()
output_file = f"converted_to_png_portrait-{unique_id}.png"
ready_png = check_and_convert_webp_to_png(input_file, output_file)
print(f"PORTRAIT PNG FILE: {ready_png}")
return ready_png
def clear_audio_elms():
return gr.update(value=None, visible=False)
def change_video_codec(input_file, output_file, codec='libx264', audio_codec='aac'):
try:
(
ffmpeg
.input(input_file)
.output(output_file, vcodec=codec, acodec=audio_codec)
.run(overwrite_output=True)
)
print(f'Successfully changed codec of {input_file} and saved as {output_file}')
except ffmpeg.Error as e:
print(f'Error occurred: {e.stderr.decode()}')
#######################################################
# Gradio APIs for optional image and voice generation #
#######################################################
def generate_portrait(prompt_image):
if prompt_image is None or prompt_image == "":
raise gr.Error("Can't generate a portrait without a prompt !")
try:
client = Client("ByteDance/SDXL-Lightning")
except:
raise gr.Error(f"ByteDance/SDXL-Lightning space's api might not be ready, please wait, or upload an image instead.")
result = client.predict(
prompt = prompt_image,
ckpt = "4-Step",
api_name = "/generate_image"
)
print(result)
# convert to png if necessary
input_file = result
unique_id = uuid.uuid4()
output_file = f"converted_to_png_portrait-{unique_id}.png"
ready_png = check_and_convert_webp_to_png(input_file, output_file)
print(f"PORTRAIT PNG FILE: {ready_png}")
return ready_png
def generate_voice_with_parler(prompt_audio, voice_description):
if prompt_audio is None or prompt_audio == "" :
raise gr.Error(f"Can't generate a voice without text to synthetize !")
if voice_description is None or voice_description == "":
gr.Info(
"For better control, You may want to provide a voice character description next time.",
duration = 10,
visible = True
)
try:
client = Client("parler-tts/parler_tts_mini")
except:
raise gr.Error(f"parler-tts/parler_tts_mini space's api might not be ready, please wait, or upload an audio instead.")
result = client.predict(
text = prompt_audio,
description = voice_description,
api_name = "/gen_tts"
)
print(result)
return result, gr.update(value=result, visible=True)
def get_whisperspeech(prompt_audio_whisperspeech, audio_to_clone):
try:
client = Client("collabora/WhisperSpeech")
except:
raise gr.Error(f"collabora/WhisperSpeech space's api might not be ready, please wait, or upload an audio instead.")
result = client.predict(
multilingual_text = prompt_audio_whisperspeech,
speaker_audio = handle_file(audio_to_clone),
speaker_url = "",
cps = 14,
api_name = "/whisper_speech_demo"
)
print(result)
return result, gr.update(value=result, visible=True)
def get_maskGCT_TTS(prompt_audio_maskGCT, audio_to_clone):
try:
client = Client("amphion/maskgct")
except:
raise gr.Error(f"amphion/maskgct space's api might not be ready, please wait, or upload an audio instead.")
result = client.predict(
prompt_wav = handle_file(audio_to_clone),
target_text = prompt_audio_maskGCT,
target_len=-1,
n_timesteps=25,
api_name="/predict"
)
print(result)
return result, gr.update(value=result, visible=True)
########################
# TALKING PORTRAIT GEN #
########################
def run_hallo(source_image, driving_audio, progress=gr.Progress(track_tqdm=True)):
unique_id = uuid.uuid4()
args = argparse.Namespace(
config = 'configs/inference/default.yaml',
source_image = source_image,
driving_audio = driving_audio,
output = f'output-{unique_id}.mp4',
pose_weight = 1.0,
face_weight = 1.0,
lip_weight = 1.0,
face_expand_ratio = 1.2,
checkpoint = None
)
inference_process(args)
return f'output-{unique_id}.mp4'
def generate_talking_portrait(portrait, voice, progress=gr.Progress(track_tqdm=True)):
if portrait is None:
raise gr.Error("Please provide a portrait to animate.")
if voice is None:
raise gr.Error("Please provide audio (4 seconds max).")
if is_shared_ui :
# Trim audio to AUDIO_MAX_DURATION for better shared experience with community
input_file = voice
unique_id = uuid.uuid4()
trimmed_output_file = f"-{unique_id}.wav"
trimmed_output_file = trim_audio(input_file, trimmed_output_file, AUDIO_MAX_DURATION)
voice = trimmed_output_file
# Add 1 second of silence at the end to avoid last word being cut by hallo
ready_audio = add_silence_to_wav(voice)
print(f"1 second of silence added to {voice}")
# Call hallo
talking_portrait_vid = run_hallo(portrait, ready_audio)
# Convert video to readable format
final_output_file = f"converted_{talking_portrait_vid}"
change_video_codec(talking_portrait_vid, final_output_file)
return final_output_file
css = '''
#col-container {
margin: 0 auto;
}
#column-names {
margin-top: 50px;
}
#main-group {
background-color: none;
}
.tabs {
background-color: unset;
}
#image-block {
flex: 1;
}
#video-block {
flex: 9;
}
#audio-block, #audio-clone-elm, audio-clone-elm-maskGCT {
flex: 1;
}
div#audio-clone-elm > .audio-container > button {
height: 180px!important;
}
div#audio-clone-elm > .audio-container > button > .wrap {
font-size: 0.9em;
}
div#audio-clone-elm-maskGCT > .audio-container > button {
height: 180px!important;
}
div#audio-clone-elm-maskGCT > .audio-container > button > .wrap {
font-size: 0.9em;
}
#text-synth, #voice-desc{
height: 130px;
}
#text-synth-wsp {
height: 120px;
}
#text-synth-maskGCT {
height: 120px;
}
#audio-column, #result-column {
display: flex;
}
#gen-voice-btn {
flex: 1;
}
#parler-tab, #whisperspeech-tab, #maskGCT-tab {
padding: 0;
}
#main-submit{
flex: 1;
}
#pro-tips {
margin-top: 50px;
}
div#warning-ready {
background-color: #ecfdf5;
padding: 0 16px 16px;
margin: 20px 0;
color: #030303!important;
}
div#warning-ready > .gr-prose > h2, div#warning-ready > .gr-prose > p {
color: #057857!important;
}
div#warning-duplicate {
background-color: #ebf5ff;
padding: 0 16px 16px;
margin: 20px 0;
color: #030303!important;
}
div#warning-duplicate > .gr-prose > h2, div#warning-duplicate > .gr-prose > p {
color: #0f4592!important;
}
div#warning-duplicate strong {
color: #0f4592;
}
p.actions {
display: flex;
align-items: center;
margin: 20px 0;
}
div#warning-duplicate .actions a {
display: inline-block;
margin-right: 10px;
}
.dark #warning-duplicate {
background-color: #0c0c0c !important;
border: 1px solid white !important;
}
div#component-8 {
align-items: stretch;
}
'''
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("""
# TTS x Hallo Talking Portrait Generator
This demo allows you to generate a talking portrait with the help of several open-source projects: SDXL Lightning | Parler TTS | WhisperSpeech | Hallo
To let the community try and enjoy this demo, video length is limited to 4 seconds audio maximum.
Duplicate this space to skip the queue and get unlimited video duration. 4-5 seconds of audio will take ~5 minutes per inference, please be patient.
""")
with gr.Row(elem_id="column-names"):
gr.Markdown("## 1. Load Portrait")
gr.Markdown("## 2. Load Voice")
gr.Markdown("## 3. Result")
with gr.Group(elem_id="main-group"):
with gr.Row():
with gr.Column():
portrait = gr.Image(
sources = ["upload"],
type = "filepath",
format = "png",
elem_id = "image-block"
)
prompt_image = gr.Textbox(
label = "Generate image",
lines = 2,
max_lines = 2
)
gen_image_btn = gr.Button("Generate portrait (optional)")
with gr.Column(elem_id="audio-column"):
voice = gr.Audio(
type = "filepath",
elem_id = "audio-block"
)
preprocess_audio_file = gr.File(visible=False)
with gr.Tab("Parler TTS", elem_id="parler-tab"):
prompt_audio = gr.Textbox(
label = "Text to synthetize",
lines = 3,
max_lines = 3,
elem_id = "text-synth"
)
voice_description = gr.Textbox(
label = "Voice description",
lines = 3,
max_lines = 3,
elem_id = "voice-desc"
)
gen_voice_btn = gr.Button("Generate voice (optional)")
with gr.Tab("WhisperSpeech", elem_id="whisperspeech-tab"):
prompt_audio_whisperspeech = gr.Textbox(
label = "Text to synthetize",
lines = 2,
max_lines = 2,
elem_id = "text-synth-wsp"
)
audio_to_clone = gr.Audio(
label = "Voice to clone",
type = "filepath",
elem_id = "audio-clone-elm"
)
gen_wsp_voice_btn = gr.Button("Generate voice clone (optional)")
with gr.Tab("MaskGCT TTS", elem_id="maskGCT-tab"):
prompt_audio_maskGCT = gr.Textbox(
label = "Text to synthetize",
lines = 2,
max_lines = 2,
elem_id = "text-synth-maskGCT"
)
audio_to_clone_maskGCT = gr.Audio(
label = "Voice to clone",
type = "filepath",
elem_id = "audio-clone-elm-maskGCT"
)
gen_maskGCT_voice_btn = gr.Button("Generate voice clone (optional)")
with gr.Column(elem_id="result-column"):
result = gr.Video(
elem_id="video-block"
)
submit_btn = gr.Button("Go talking Portrait !", elem_id="main-submit")
with gr.Row(elem_id="pro-tips"):
gr.Markdown("""
# Hallo Pro Tips:
Hallo has a few simple requirements for input data:
For the source image:
1. It should be cropped into squares.
2. The face should be the main focus, making up 50%-70% of the image.
3. The face should be facing forward, with a rotation angle of less than 30° (no side profiles).
For the driving audio:
1. It must be in WAV format.
2. It must be in English since our training datasets are only in this language.
3. Ensure the vocals are clear; background music is acceptable.
""")
gr.Markdown("""
# TTS Pro Tips:
For Parler TTS:
- Include the term "very clear audio" to generate the highest quality audio, and "very noisy audio" for high levels of background noise
- Punctuation can be used to control the prosody of the generations, e.g. use commas to add small breaks in speech
- The remaining speech features (gender, speaking rate, pitch and reverberation) can be controlled directly through the prompt
For WhisperSpeech:
WhisperSpeech is able to quickly clone a voice from an audio sample.
- Upload a voice sample in the WhisperSpeech tab
- Add text to synthetize, hit Generate voice clone button
""")
portrait.upload(
fn = convert_user_uploded_webp,
inputs = [portrait],
outputs = [portrait],
queue = False,
show_api = False
)
voice.upload(
fn = check_mp3,
inputs = [voice],
outputs = [voice, preprocess_audio_file],
queue = False,
show_api = False
)
voice.clear(
fn = clear_audio_elms,
inputs = None,
outputs = [preprocess_audio_file],
queue = False,
show_api = False
)
gen_image_btn.click(
fn = generate_portrait,
inputs = [prompt_image],
outputs = [portrait],
queue = False,
show_api = False
)
gen_voice_btn.click(
fn = generate_voice_with_parler,
inputs = [prompt_audio, voice_description],
outputs = [voice, preprocess_audio_file],
queue = False,
show_api = False
)
gen_wsp_voice_btn.click(
fn = get_whisperspeech,
inputs = [prompt_audio_whisperspeech, audio_to_clone],
outputs = [voice, preprocess_audio_file],
queue = False,
show_api = False
)
gen_maskGCT_voice_btn.click(
fn = get_maskGCT_TTS,
inputs = [prompt_audio_maskGCT, audio_to_clone_maskGCT],
outputs = [voice, preprocess_audio_file],
queue = False,
show_api = False
)
submit_btn.click(
fn = generate_talking_portrait,
inputs = [portrait, voice],
outputs = [result],
show_api = False
)
demo.queue(max_size=2).launch(show_error=True, show_api=False) |